forked from CV-Reimplementation/Ucolor-Reimplementation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
54 lines (36 loc) · 1.41 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import warnings
import os
from accelerate import Accelerator
from torch.utils.data import DataLoader
from torchmetrics.functional import peak_signal_noise_ratio, structural_similarity_index_measure
from torchvision.utils import save_image
from tqdm import tqdm
from config import Config
from data import get_testing_data
from models import *
from utils import *
warnings.filterwarnings('ignore')
opt = Config('config.yml')
seed_everything(opt.OPTIM.SEED)
os.makedirs('result', exist_ok=True)
def test():
accelerator = Accelerator()
# Data Loader
val_dir = opt.TRAINING.VAL_DIR
test_dataset = get_testing_data(val_dir, opt.MODEL.INPUT, {'w': opt.TRAINING.PS_W, 'h': opt.TRAINING.PS_H, 'ori': False})
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False, num_workers=8, drop_last=False,
pin_memory=True)
# Model & Metrics
model = Model()
load_checkpoint(model, opt.TESTING.WEIGHT)
model, test_loader = accelerator.prepare(model, test_loader)
model.eval()
for _, test_data in enumerate(tqdm(test_loader)):
# get the inputs; data is a list of [targets, inputs, filename]
inp = test_data[0].contiguous()
dep = test_data[1].contiguous()
with torch.no_grad():
res = model(inp, dep)
save_image(res, os.path.join(os.getcwd(), "result", test_data[2][0]))
if __name__ == '__main__':
test()