-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLogistic_Regression_Fintech.py
64 lines (52 loc) · 1.64 KB
/
Logistic_Regression_Fintech.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import pandas as pd
import numpy as np
from sklearn.metrics import classification_report
from imblearn.over_sampling import RandomOverSampler
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import time
import os
from dotenv import load_dotenv
# Global variables that will be used to reduce the string ussage
close = "Close"
MA = "Moving_Average"
LogR = "Logistic_Regression"
LinR = "Linear_Regression"
display = [close,MA,LogR,LinR]
def file_processing(cols):
# Loading the dot-env file to extract the address of the file
load_dotenv()
file_address = os.getenv("FILE_ADDRESS")
print(f"\n\nFILE-ADDRESS : {file_address} \n\n")
df = pd.read_csv(file_address)
for i in cols:
df[i] = None
return df
def Moving_Avg(df,position:int)->float:
sum = 0
for i in range(position):
sum += df[close].iloc[i]
average = sum/(position)
return round(average,3)
def Moving_P_Avg(df,position:int,p:int)->float:
sum = 0.00
if position > p:
for i in range(position-p,position):
sum += df[close].iloc[i]
return round(sum,3)
else:
return Moving_Avg(df,position)
# def logistic_regression():
# def scaling(df,oversampling = False):
# def accuracy_of_logistic_regression():
def main():
# Add these columns in the data-frame
cols = ["Moving_Average","Logistic_Regression","Linear_Regression"]
df = file_processing(cols)
p = int(input("\nEnter the P value : \n"))
df[MA].iloc[0] = df[close].iloc[0]
for i in range(1,len(df)):
df[MA].iloc[i] = Moving_P_Avg(df,i,p)
print("\n\nThe Data Set is : \n\n")
print(df[display])
main()