-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLongest Bitonic subsequence.cpp
36 lines (29 loc) · 1.14 KB
/
Longest Bitonic subsequence.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
/*
Problem Link: https://practice.geeksforgeeks.org/problems/longest-bitonic-subsequence0824/1
*/
// -----Approach 1: Tabulation ------------------------------------------------------------
class Solution{
public:
int LongestBitonicSequence(vector<int>nums)
{
int n= nums.size();
vector<int> dp1(n, 1), dp2(n, 1);
for(int idx=0; idx<n; idx++){
for(int prevIdx= 0; prevIdx<idx; prevIdx++){
if(nums[prevIdx] < nums[idx] && dp1[idx] < 1 + dp1[prevIdx])
dp1[idx]= 1 + dp1[prevIdx];
}
}
int mx= 0;
for(int idx=n-1; idx>=0; idx--){ // for reverse
for(int prevIdx= n-1; prevIdx>idx; prevIdx--){
if(nums[prevIdx] < nums[idx] && dp2[idx] < 1 + dp2[prevIdx])
dp2[idx]= 1 + dp2[prevIdx];
}
mx= max(mx, dp2[idx] + dp1[idx] - 1);
// length from left (dp1) + max length from right (dp2) - 1 (current element is added twice)
// maximum of this would be the longest bitonic sequence
}
return mx;
}
};