-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path1312. Minimum Insertion Steps to Make a String Palindrome.cpp
115 lines (83 loc) · 2.99 KB
/
1312. Minimum Insertion Steps to Make a String Palindrome.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
// -----Approach 1: Memoization (TLE) -------------------------------------------------------
/*
Problem Link: https://leetcode.com/problems/minimum-insertion-steps-to-make-a-string-palindrome/
*/
// Time Limit Exceeded
class Solution {
private:
int sol(int i, int j, vector<vector<int>>& dp, string s1, string s2){
if(i == 0 || j == 0) return 0;
if(dp[i][j] != -1) return dp[i][j];
if(s1[i-1] == s2[j-1]) return 1 + sol(i-1, j-1, dp, s1, s2);
return dp[i][j] = max( sol(i-1, j, dp, s1, s2), sol(i, j-1, dp, s1, s2) );
}
int longestPalindromeSubseq(string s1) {
int n= s1.size();
string s2= s1;
reverse(s1.begin(), s1.end());
int m= s2.size();
vector<vector<int>> dp(n+1, vector<int>(m+1, -1));
return sol(n, m, dp, s1, s2);
}
public:
int minInsertions(string s) {
return s.size() - longestPalindromeSubseq(s);
}
};
// -----Approach 2: Tabulation ------------------------------------------------------------
/*
Problem Link: https://leetcode.com/problems/minimum-insertion-steps-to-make-a-string-palindrome/
Time: 100 ms (Beats 37.4%), Space: 28.5 MB (Beats 48.18%)
*/
class Solution {
private:
int longestPalindromeSubseq(string s1) {
int n= s1.size();
string s2= s1;
reverse(s1.begin(), s1.end()); // longest palindromic subsequence will be the LCS(s1, reverse_string of s1)
int m= s2.size();
vector<vector<int>> dp(n+1, vector<int>(m+1, 0));
for(int i=0; i<=n; i++) dp[i][0]= 0;
for(int j=0; j<=m; j++) dp[0][j]= 0;
for(int i=1; i<=n; i++){
for(int j=1; j<=m; j++){
if(s1[i-1] == s2[j-1]) dp[i][j]= 1 + dp[i-1][j-1];
else dp[i][j] = max( dp[i-1][j], dp[i][j-1] );
}
}
return dp[n][m];
}
public:
int minInsertions(string s) {
return s.size() - longestPalindromeSubseq(s);
}
};
// -----Approach 3: Space Optimization ------------------------------------------------------------
/*
Problem Link: https://leetcode.com/problems/minimum-insertion-steps-to-make-a-string-palindrome/
Time: 56 ms (Beats 72.14%), Space: 6.6 MB (Beats 99.70%)
*/
class Solution {
private:
int longestPalindromeSubseq(string s1) {
int n= s1.size();
string s2= s1;
reverse(s1.begin(), s1.end());
// longest palindromic subsequence will be the LCS of (s1, reverse string of s1)
int m= s2.size();
vector<int> prev(m+1, 0), curr(m+1, 0);
for(int j=0; j<=m; j++) prev[j]= 0;
for(int i=1; i<=n; i++){
for(int j=1; j<=m; j++){
if(s1[i-1] == s2[j-1]) curr[j]= 1 + prev[j-1];
else curr[j] = max( prev[j], curr[j-1] );
}
prev= curr;
}
return prev[m];
}
public:
int minInsertions(string s) {
return s.size() - longestPalindromeSubseq(s);
}
};