-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransform_layers.py
410 lines (320 loc) · 13.1 KB
/
transform_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
import math
import numbers
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Function
if torch.__version__ >= '1.4.0':
kwargs = {'align_corners': False}
else:
kwargs = {}
def get_simclr_augmentation(img_size: tuple, dataname: str):
# parameter for resizecrop
resize_scale = (0.08, 1.0) # resize scaling factor
# Align augmentation
color_jitter = ColorJitterLayer(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8)
color_gray = RandomColorGrayLayer(p=0.2)
resize_crop = RandomResizedCropLayer(scale=resize_scale, size=img_size)
# Transform define
if dataname == 'ImageNet1K': # Using RandomResizedCrop at PIL transform
transform = nn.Sequential(
color_jitter,
color_gray,
)
else:
transform = nn.Sequential(
color_jitter,
color_gray,
resize_crop,
)
return transform
class RandomResizedCropLayer(nn.Module):
def __init__(self, size=None, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.)):
'''
Inception Crop
size (tuple): size of fowarding image (C, W, H)
scale (tuple): range of size of the origin size cropped
ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
'''
super(RandomResizedCropLayer, self).__init__()
_eye = torch.eye(2, 3)
if isinstance(size, int):
self.size = [size, size]
else:
self.size = list(size)
self.register_buffer('_eye', _eye)
self.scale = scale
self.ratio = ratio
def forward(self, inputs, whbias=None):
_device = inputs.device
N = inputs.size(0)
_theta = self._eye.repeat(N, 1, 1)
if whbias is None:
whbias = self._sample_latent(inputs)
_theta[:, 0, 0] = whbias[:, 0]
_theta[:, 1, 1] = whbias[:, 1]
_theta[:, 0, 2] = whbias[:, 2]
_theta[:, 1, 2] = whbias[:, 3]
grid = F.affine_grid(_theta, inputs.size(), **kwargs).to(_device)
output = F.grid_sample(inputs, grid, padding_mode='reflection', **kwargs)
if self.size is not None:
output = F.adaptive_avg_pool2d(output, (self.size[0],self.size[1]))
# print(self.size[0])
# print(self.size[1])
# print(output.size())
return output
def _clamp(self, whbias):
w = whbias[:, 0]
h = whbias[:, 1]
w_bias = whbias[:, 2]
h_bias = whbias[:, 3]
# Clamp with scale
w = torch.clamp(w, *self.scale)
h = torch.clamp(h, *self.scale)
# Clamp with ratio
w = self.ratio[0] * h + torch.relu(w - self.ratio[0] * h)
w = self.ratio[1] * h - torch.relu(self.ratio[1] * h - w)
# Clamp with bias range: w_bias \in (w - 1, 1 - w), h_bias \in (h - 1, 1 - h)
w_bias = w - 1 + torch.relu(w_bias - w + 1)
w_bias = 1 - w - torch.relu(1 - w - w_bias)
h_bias = h - 1 + torch.relu(h_bias - h + 1)
h_bias = 1 - h - torch.relu(1 - h - h_bias)
whbias = torch.stack([w, h, w_bias, h_bias], dim=0).t()
return whbias
def _sample_latent(self, inputs):
_device = inputs.device
N, _, width, height = inputs.shape
# N * 10 trial
area = width * height
target_area = np.random.uniform(*self.scale, N * 10) * area
log_ratio = (math.log(self.ratio[0]), math.log(self.ratio[1]))
aspect_ratio = np.exp(np.random.uniform(*log_ratio, N * 10))
# If doesn't satisfy ratio condition, then do central crop
w = np.round(np.sqrt(target_area * aspect_ratio))
h = np.round(np.sqrt(target_area / aspect_ratio))
cond = (0 < w) * (w <= width) * (0 < h) * (h <= height)
w = w[cond]
h = h[cond]
cond_len = w.shape[0]
if cond_len >= N:
w = w[:N]
h = h[:N]
else:
w = np.concatenate([w, np.ones(N - cond_len) * width])
h = np.concatenate([h, np.ones(N - cond_len) * height])
w_bias = np.random.randint(w - width, width - w + 1) / width
h_bias = np.random.randint(h - height,height - h + 1) / height
w = w / width
h = h / height
whbias = np.column_stack([w, h, w_bias, h_bias])
whbias = torch.tensor(whbias, device=_device)
return whbias
def rgb2hsv(rgb):
"""Convert a 4-d RGB tensor to the HSV counterpart.
Here, we compute hue using atan2() based on the definition in [1],
instead of using the common lookup table approach as in [2, 3].
Those values agree when the angle is a multiple of 30°,
otherwise they may differ at most ~1.2°.
References
[1] https://en.wikipedia.org/wiki/Hue
[2] https://www.rapidtables.com/convert/color/rgb-to-hsv.html
[3] https://github.com/scikit-image/scikit-image/blob/master/skimage/color/colorconv.py#L212
"""
r, g, b = rgb[:, 0, :, :], rgb[:, 1, :, :], rgb[:, 2, :, :]
Cmax = rgb.max(1)[0]
Cmin = rgb.min(1)[0]
delta = Cmax - Cmin
hue = torch.atan2(math.sqrt(3) * (g - b), 2 * r - g - b)
hue = (hue % (2 * math.pi)) / (2 * math.pi)
saturate = delta / Cmax
value = Cmax
hsv = torch.stack([hue, saturate, value], dim=1)
hsv[~torch.isfinite(hsv)] = 0.
return hsv
def hsv2rgb(hsv):
"""Convert a 4-d HSV tensor to the RGB counterpart.
>>> %timeit hsv2rgb(hsv)
2.37 ms ± 13.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
>>> %timeit rgb2hsv_fast(rgb)
298 µs ± 542 ns per loop (mean ± std. dev. of 7 runs, 1000 loops each)
>>> torch.allclose(hsv2rgb(hsv), hsv2rgb_fast(hsv), atol=1e-6)
True
References
[1] https://en.wikipedia.org/wiki/HSL_and_HSV#HSV_to_RGB_alternative
"""
h, s, v = hsv[:, [0]], hsv[:, [1]], hsv[:, [2]]
c = v * s
n = hsv.new_tensor([5, 3, 1]).view(3, 1, 1)
k = (n + h * 6) % 6
t = torch.min(k, 4 - k)
t = torch.clamp(t, 0, 1)
return v - c * t
class RandomHSVFunction(Function):
@staticmethod
def forward(ctx, x, f_h, f_s, f_v):
# ctx is a context object that can be used to stash information
# for backward computation
x = rgb2hsv(x)
h = x[:, 0, :, :]
h += (f_h * 255. / 360.)
h = (h % 1)
x[:, 0, :, :] = h
x[:, 1, :, :] = x[:, 1, :, :] * f_s
x[:, 2, :, :] = x[:, 2, :, :] * f_v
x = torch.clamp(x, 0, 1)
x = hsv2rgb(x)
return x
@staticmethod
def backward(ctx, grad_output):
# We return as many input gradients as there were arguments.
# Gradients of non-Tensor arguments to forward must be None.
grad_input = None
if ctx.needs_input_grad[0]:
grad_input = grad_output.clone()
return grad_input, None, None, None
class ColorJitterLayer(nn.Module):
def __init__(self, p, brightness, contrast, saturation, hue):
super(ColorJitterLayer, self).__init__()
self.prob = p
self.brightness = self._check_input(brightness, 'brightness')
self.contrast = self._check_input(contrast, 'contrast')
self.saturation = self._check_input(saturation, 'saturation')
self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
clip_first_on_zero=False)
def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
if isinstance(value, numbers.Number):
if value < 0:
raise ValueError("If {} is a single number, it must be non negative.".format(name))
value = [center - value, center + value]
if clip_first_on_zero:
value[0] = max(value[0], 0)
elif isinstance(value, (tuple, list)) and len(value) == 2:
if not bound[0] <= value[0] <= value[1] <= bound[1]:
raise ValueError("{} values should be between {}".format(name, bound))
else:
raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))
# if value is 0 or (1., 1.) for brightness/contrast/saturation
# or (0., 0.) for hue, do nothing
if value[0] == value[1] == center:
value = None
return value
def adjust_contrast(self, x):
if self.contrast:
factor = x.new_empty(x.size(0), 1, 1, 1).uniform_(*self.contrast)
means = torch.mean(x, dim=[2, 3], keepdim=True)
x = (x - means) * factor + means
return torch.clamp(x, 0, 1)
def adjust_hsv(self, x):
f_h = x.new_zeros(x.size(0), 1, 1)
f_s = x.new_ones(x.size(0), 1, 1)
f_v = x.new_ones(x.size(0), 1, 1)
if self.hue:
f_h.uniform_(*self.hue)
if self.saturation:
f_s = f_s.uniform_(*self.saturation)
if self.brightness:
f_v = f_v.uniform_(*self.brightness)
return RandomHSVFunction.apply(x, f_h, f_s, f_v)
def transform(self, inputs):
# Shuffle transform
if np.random.rand() > 0.5:
transforms = [self.adjust_contrast, self.adjust_hsv]
else:
transforms = [self.adjust_hsv, self.adjust_contrast]
for t in transforms:
inputs = t(inputs)
return inputs
def forward(self, inputs):
_prob = inputs.new_full((inputs.size(0),), self.prob)
_mask = torch.bernoulli(_prob).view(-1, 1, 1, 1)
return inputs * (1 - _mask) + self.transform(inputs) * _mask
class RandomColorGrayLayer(nn.Module):
def __init__(self, p):
super(RandomColorGrayLayer, self).__init__()
self.prob = p
_weight = torch.tensor([[0.299, 0.587, 0.114]])
self.register_buffer('_weight', _weight.view(1, 3, 1, 1))
def forward(self, inputs, aug_index=None):
if aug_index == 0:
return inputs
l = F.conv2d(inputs, self._weight)
gray = torch.cat([l, l, l], dim=1)
if aug_index is None:
_prob = inputs.new_full((inputs.size(0),), self.prob)
_mask = torch.bernoulli(_prob).view(-1, 1, 1, 1)
gray = inputs * (1 - _mask) + gray * _mask
return gray
class TwoCropTransform:
"""Create two crops of the same image"""
def __init__(self, transform):
self.transform = transform
def __call__(self, x):
return [self.transform(x), self.transform(x)]
class HorizontalFlipLayer(nn.Module):
def __init__(self):
"""
img_size : (int, int, int)
Height and width must be powers of 2. E.g. (32, 32, 1) or
(64, 128, 3). Last number indicates number of channels, e.g. 1 for
grayscale or 3 for RGB
"""
super(HorizontalFlipLayer, self).__init__()
_eye = torch.eye(2, 3)
self.register_buffer('_eye', _eye)
def forward(self, inputs):
_device = inputs.device
N = inputs.size(0)
_theta = self._eye.repeat(N, 1, 1)
r_sign = torch.bernoulli(torch.ones(N, device=_device) * 0.5) * 2 - 1
_theta[:, 0, 0] = r_sign
grid = F.affine_grid(_theta, inputs.size(), **kwargs).to(_device)
inputs = F.grid_sample(inputs, grid, padding_mode='reflection', **kwargs)
return inputs
class Rotation(nn.Module):
def __init__(self, max_range = 4):
super(Rotation, self).__init__()
self.max_range = max_range
self.prob = 0.5
def forward(self, input, aug_index=None):
_device = input.device
_, _, H, W = input.size()
if aug_index is None:
aug_index = np.random.randint(4)
output = torch.rot90(input, aug_index, (2, 3))
_prob = input.new_full((input.size(0),), self.prob)
_mask = torch.bernoulli(_prob).view(-1, 1, 1, 1)
output = _mask * input + (1-_mask) * output
else:
aug_index = aug_index % self.max_range
output = torch.rot90(input, aug_index, (2, 3))
return output
class CutPerm(nn.Module):
def __init__(self, max_range = 4):
super(CutPerm, self).__init__()
self.max_range = max_range
self.prob = 0.5
def forward(self, input, aug_index=None):
_device = input.device
_, _, H, W = input.size()
if aug_index is None:
aug_index = np.random.randint(4)
output = self._cutperm(input, aug_index)
_prob = input.new_full((input.size(0),), self.prob)
_mask = torch.bernoulli(_prob).view(-1, 1, 1, 1)
output = _mask * input + (1 - _mask) * output
else:
aug_index = aug_index % self.max_range
output = self._cutperm(input, aug_index)
return output
def _cutperm(self, inputs, aug_index):
_, _, H, W = inputs.size()
h_mid = int(H / 2)
w_mid = int(W / 2)
jigsaw_h = aug_index // 2
jigsaw_v = aug_index % 2
if jigsaw_h == 1:
inputs = torch.cat((inputs[:, :, h_mid:, :], inputs[:, :, 0:h_mid, :]), dim=2)
if jigsaw_v == 1:
inputs = torch.cat((inputs[:, :, :, w_mid:], inputs[:, :, :, 0:w_mid]), dim=3)
return inputs