-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNode.py
250 lines (212 loc) · 9.19 KB
/
Node.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import os
import collections
# Ray
import ray
# RLlib
import ray.train
from ray.tune.registry import register_env
from ray.rllib.algorithms.ppo import PPOConfig
# Environment
from ClimateEnvironment import ClimateEnv
# Utilities
import pandas as pd
import time
@ray.remote(num_cpus=2)
class Node:
def __init__(self, node_id, local_data_path, start_date, load_checkpoint=False, checkpoint_dir=None, train_batch_size=500):
"""
Each node trains a PPO agent on its local dataset.
Args:
node_id (int): Unique identifier for this node (station).
local_data_path (str): Path to the CSV file containing the local dataset.
start_date (pd.Timestamp or str): The initial cutoff date for the training data.
Returns:
None
"""
self.node_id = node_id
self.local_data_path = local_data_path
if checkpoint_dir is None:
FileNotFoundError(f"[Node {self.node_id}] checkpoint_dir is not defined.")
self.checkpoint_dir = checkpoint_dir
os.makedirs(checkpoint_dir, exist_ok=True)
self.checkpoint_path = os.path.join(checkpoint_dir, f"node_{self.node_id}")
# Load the full dataset
try:
self.full_data = pd.read_csv(local_data_path)
except FileNotFoundError:
print(f"File not found at path: {local_data_path}")
self.full_data = pd.DataFrame()
# Convert DATE column to datetime for date-based filtering
if not self.full_data.empty:
self.full_data["DATE"] = pd.to_datetime(self.full_data["DATE"])
else:
print(f"Node {self.node_id} has empty dataset!")
# Define the initial "end date" for the training data
self.current_end_date = None
if not self.full_data.empty:
self.current_end_date = pd.to_datetime(start_date)
if self.current_end_date < self.full_data["DATE"].min():
# If start_date is before the min date in the dataset,
# adjust it to the min date to avoid empty subsets.
self.current_end_date = self.full_data["DATE"].min()
else:
self.current_end_date = None
# Create a unique environment name for this node
env_name = f"ClimateEnv_{self.node_id}"
# We neeed create a new ClimateEnv with the full dataset,
# and we will call `update_end_date` later to limit it.
def env_creator(cfg):
env = ClimateEnv(self.full_data)
if self.current_end_date is not None:
env.update_end_date(self.current_end_date)
return env
# Register the environment ONCE
register_env(env_name, env_creator)
# PPO configuration
self.config = (
PPOConfig()
.framework("torch")
.environment(env_name)
.resources(num_gpus=0)
.env_runners(num_env_runners=2)
.api_stack(
enable_rl_module_and_learner=False,
enable_env_runner_and_connector_v2=False
)
.training(
gamma=0.995,
lr=0.00001,
train_batch_size=train_batch_size, #
#sgd_minibatch_size=1024, # Deprecated
num_sgd_iter=20,
clip_param=0.2,
vf_loss_coeff=0.5,
vf_clip_param=10.0,
entropy_coeff=0.01,
lambda_=0.95,
use_critic=True,
use_gae=True,
)
)
# Build the trainer
self.trainer = self.config.build()
# Load the latest checkpoint if requested
if load_checkpoint:
self.load_checkpoint()
print(f"[Node {self.node_id}] Initialized with end date: {self.current_end_date}.")
def load_checkpoint(self):
"""
Load the latest checkpoint from disk.
"""
try:
self.trainer.restore(self.checkpoint_path) #https://docs.ray.io/en/latest/rllib/package_ref/doc/ray.rllib.algorithms.algorithm.Algorithm.restore.html
print(f"[Node {self.node_id}] Loaded checkpoint from {self.checkpoint_path} !")
except Exception as e:
print(f"[Node {self.node_id}] No checkpoint found or failed to load: {e}")
def save_checkpoint(self):
"""
Save the latest checkpoint to disk.
"""
try:
os.makedirs(self.checkpoint_path, exist_ok=True)
# Save the current checkpoint
self.trainer.save_checkpoint(self.checkpoint_path)
print(f"[Node {self.node_id}] Checkpoint saved to {self.checkpoint_path}")
except Exception as e:
print(f"[Node {self.node_id}] Failed to save checkpoint: {e}")
def add_new_days(self, days=1):
"""
Extend the current_end_date by the specified number of days and update the environment.
"""
if self.full_data.empty:
print(f"[Node {self.node_id}] No data available to reveal.")
return
max_date = self.full_data["DATE"].max()
self.current_end_date = min(self.current_end_date + pd.Timedelta(days=days), max_date)
new_end_date = self.current_end_date
def do_update(env):
env.update_end_date(new_end_date)
# Update the environment
# Note that: https://discuss.ray.io/t/correct-way-of-using-foreach-worker-and-foreach-env/21000
# I've spent a lot time to resolve this issue
# Now ray uses gymnasium, so we need to use env_runner_group and not workers
self.trainer.env_runner_group.foreach_env(do_update)
print(f"[Node {self.node_id}] Revealed new data up to: {new_end_date}.")
return new_end_date
def train(self, num_steps=1):
"""
Train the PPO agent for a specified number of steps (iterations).
Args:
num_steps (int): Number of training iterations to run.
Returns:
tuple: Mean values of VF loss, policy loss, KL divergence, and entropy
"""
mean_VF_loss = 0
mean_policy_loss = 0
mean_kl = 0
mean_entropy = 0
start_time = time.time()
for i in range(num_steps):
#sample_time = self.trainer.env_runner_group.foreach_env(lambda env: env.sample())
#print(f"[Node {self.node_id}] Sample Time: {sample_time}")
#
result = self.trainer.train()
# Logg
policy_loss = result["info"]["learner"]["default_policy"]["learner_stats"]["policy_loss"]
vf_loss = result["info"]["learner"]["default_policy"]["learner_stats"]["vf_loss"]
kl = result["info"]["learner"]["default_policy"]["learner_stats"]["kl"]
entropy = result["info"]["learner"]["default_policy"]["learner_stats"]["entropy"]
num_steps_sampled = result["num_env_steps_sampled"]
num_steps_trained = result["num_env_steps_trained"]
training_iteration = result["training_iteration"]
# Print training stats
print(f"[Node {self.node_id}] Training Iteration {training_iteration}: "
f"Steps Sampled: {num_steps_sampled}, Steps Trained: {num_steps_trained}")
print(f"[Node {self.node_id}] Training Stats - Policy Loss: {policy_loss:.4f}, "
f"VF Loss: {vf_loss:.4f}, KL: {kl:.4f}, Entropy: {entropy:.4f}")
# Update the mean values
mean_VF_loss += vf_loss
mean_policy_loss += policy_loss
mean_kl += kl
mean_entropy += entropy
self.metrics = { "VF_loss": mean_VF_loss, "policy_loss": mean_policy_loss, "kl": mean_kl, "entropy": mean_entropy }
# Save the checkpoint
self.save_checkpoint()
# Calculate the mean values
mean_VF_loss /= num_steps #
mean_policy_loss /= num_steps #
mean_kl /= num_steps #
mean_entropy /= num_steps #
end_time = time.time()
elapsed_time = end_time - start_time
print(f"[Node {self.node_id}] Training completed in {elapsed_time:.4f} seconds.")
return mean_VF_loss, mean_policy_loss, mean_kl, mean_entropy, elapsed_time
def get_weights(self):
"""
Return the weights of the local model for federated learning.
Returns:
OrderedDict: The local model weights, in the same order for each node.
"""
weights = self.trainer.get_weights()
weights = collections.OrderedDict(weights)
return weights
def set_weights(self, global_weights):
"""
Update the local model with the federated global weights.
Args:
global_weights (dict): A dictionary of weights from the global model.
Returns:
None
"""
self.trainer.set_weights(global_weights)
print(f"[Node {self.node_id}] Weights updated with global model.")
def ping(self):
"""
Simple ping method to check if the node is alive.
"""
return True
def node_id(self):
"""
Return the unique identifier for this node.
"""
return self.node_id