forked from yeonholee50/AmpyFin
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrading_client.py
304 lines (267 loc) · 14.6 KB
/
trading_client.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
from polygon import RESTClient
from config import POLYGON_API_KEY, FINANCIAL_PREP_API_KEY, MONGO_DB_USER, MONGO_DB_PASS, API_KEY, API_SECRET, BASE_URL, mongo_url
import json
import certifi
from urllib.request import urlopen
from zoneinfo import ZoneInfo
from pymongo import MongoClient
import time
from datetime import datetime, timedelta
from helper_files.client_helper import place_order, get_ndaq_tickers, market_status, strategies, get_latest_price, dynamic_period_selector
from alpaca.trading.client import TradingClient
from alpaca.data.timeframe import TimeFrame, TimeFrameUnit
from alpaca.data.historical.stock import StockHistoricalDataClient
from alpaca.trading.requests import MarketOrderRequest
from alpaca.trading.enums import OrderSide, TimeInForce
from strategies.archived_strategies.trading_strategies_v1 import get_historical_data
import yfinance as yf
import logging
from collections import Counter
from statistics import median, mode
import statistics
import heapq
import requests
from strategies.talib_indicators import *
import threading
buy_heap = []
suggestion_heap = []
sold = False
ca = certifi.where()
# Set up logging configuration
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
handlers=[
logging.FileHandler('system.log'), # Log messages to a file
logging.StreamHandler() # Log messages to the console
]
)
def weighted_majority_decision_and_median_quantity(decisions_and_quantities):
"""
Determines the majority decision (buy, sell, or hold) and returns the weighted median quantity for the chosen action.
Groups 'strong buy' with 'buy' and 'strong sell' with 'sell'.
Applies weights to quantities based on strategy coefficients.
"""
buy_decisions = ['buy', 'strong buy']
sell_decisions = ['sell', 'strong sell']
weighted_buy_quantities = []
weighted_sell_quantities = []
buy_weight = 0
sell_weight = 0
hold_weight = 0
# Process decisions with weights
for decision, quantity, weight in decisions_and_quantities:
if decision in buy_decisions:
weighted_buy_quantities.extend([quantity])
buy_weight += weight
elif decision in sell_decisions:
weighted_sell_quantities.extend([quantity])
sell_weight += weight
elif decision == 'hold':
hold_weight += weight
# Determine the majority decision based on the highest accumulated weight
if buy_weight > sell_weight and buy_weight > hold_weight:
return 'buy', median(weighted_buy_quantities) if weighted_buy_quantities else 0, buy_weight, sell_weight, hold_weight
elif sell_weight > buy_weight and sell_weight > hold_weight:
return 'sell', median(weighted_sell_quantities) if weighted_sell_quantities else 0, buy_weight, sell_weight, hold_weight
else:
return 'hold', 0, buy_weight, sell_weight, hold_weight
def process_ticker(ticker, client, trading_client, data_client, mongo_client, strategy_to_coefficient):
global buy_heap
global suggestion_heap
global sold
if sold is True:
print("Sold boolean is True. Exiting process_ticker function.")
else:
try:
decisions_and_quantities = []
current_price = None
while current_price is None:
try:
current_price = get_latest_price(ticker)
except Exception as fetch_error:
logging.warning(f"Error fetching price for {ticker}. Retrying... {fetch_error}")
time.sleep(10)
print(f"Current price of {ticker}: {current_price}")
asset_collection = mongo_client.trades.assets_quantities
limits_collection = mongo_client.trades.assets_limit
account = trading_client.get_account()
buying_power = float(account.cash)
portfolio_value = float(account.portfolio_value)
cash_to_portfolio_ratio = buying_power / portfolio_value
asset_info = asset_collection.find_one({'symbol': ticker})
portfolio_qty = asset_info['quantity'] if asset_info else 0.0
print(f"Portfolio quantity for {ticker}: {portfolio_qty}")
limit_info = limits_collection.find_one({'symbol': ticker})
if limit_info:
stop_loss_price = limit_info['stop_loss_price']
take_profit_price = limit_info['take_profit_price']
if current_price <= stop_loss_price or current_price >= take_profit_price:
sold = True
print(f"Executing SELL order for {ticker} due to stop-loss or take-profit condition")
quantity = portfolio_qty
order = place_order(trading_client, symbol=ticker, side=OrderSide.SELL, quantity=quantity, mongo_client=mongo_client)
logging.info(f"Executed SELL order for {ticker}: {order}")
return
indicator_tb = mongo_client.IndicatorsDatabase
indicator_collection = indicator_tb.Indicators
for strategy in strategies:
historical_data = None
while historical_data is None:
try:
period = indicator_collection.find_one({'indicator': strategy.__name__})
historical_data = get_data(ticker, mongo_client, period['ideal_period'])
except Exception as fetch_error:
logging.warning(f"Error fetching historical data for {ticker}. Retrying... {fetch_error}")
time.sleep(60)
decision, quantity = simulate_strategy(strategy, ticker, current_price, historical_data, buying_power, portfolio_qty, portfolio_value)
print(f"Strategy: {strategy.__name__}, Decision: {decision}, Quantity: {quantity} for {ticker}")
weight = strategy_to_coefficient[strategy.__name__]
decisions_and_quantities.append((decision, quantity, weight))
decision, quantity, buy_weight, sell_weight, hold_weight = weighted_majority_decision_and_median_quantity(decisions_and_quantities)
print(f"Ticker: {ticker}, Decision: {decision}, Quantity: {quantity}, Weights: Buy: {buy_weight}, Sell: {sell_weight}, Hold: {hold_weight}")
if decision == "buy" and float(account.cash) > 15000 and (((quantity + portfolio_qty) * current_price) / portfolio_value) < 0.1:
heapq.heappush(buy_heap, (-(buy_weight-(sell_weight + (hold_weight * 0.5))), quantity, ticker))
elif decision == "sell" and portfolio_qty > 0:
print(f"Executing SELL order for {ticker}")
print(f"Executing quantity of {quantity} for {ticker}")
sold = True
quantity = max(quantity, 1)
order = place_order(trading_client, symbol=ticker, side=OrderSide.SELL, quantity=quantity, mongo_client=mongo_client)
logging.info(f"Executed SELL order for {ticker}: {order}")
elif portfolio_qty == 0.0 and buy_weight > sell_weight and (((quantity + portfolio_qty) * current_price) / portfolio_value) < 0.1 and float(account.cash) > 15000:
max_investment = portfolio_value * 0.10
buy_quantity = min(int(max_investment // current_price), int(buying_power // current_price))
if buy_weight > 1000000:
buy_quantity = max(buy_quantity, 2)
buy_quantity = buy_quantity // 2
print(f"Suggestions for buying for {ticker} with a weight of {buy_weight} and quantity of {buy_quantity}")
heapq.heappush(suggestion_heap, (-(buy_weight - sell_weight), buy_quantity, ticker))
else:
logging.info(f"Holding for {ticker}, no action taken.")
else:
logging.info(f"Holding for {ticker}, no action taken.")
except Exception as e:
logging.error(f"Error processing {ticker}: {e}")
def main():
"""
Main function to control the workflow based on the market's status.
"""
global buy_heap
global suggestion_heap
global sold
ndaq_tickers = []
early_hour_first_iteration = True
post_hour_first_iteration = True
client = RESTClient(api_key=POLYGON_API_KEY)
trading_client = TradingClient(API_KEY, API_SECRET)
data_client = StockHistoricalDataClient(API_KEY, API_SECRET)
mongo_client = MongoClient(mongo_url, tlsCAFile=ca)
db = mongo_client.trades
asset_collection = db.assets_quantities
limits_collection = db.assets_limit
strategy_to_coefficient = {}
sold = False
while True:
client = RESTClient(api_key=POLYGON_API_KEY)
trading_client = TradingClient(API_KEY, API_SECRET)
data_client = StockHistoricalDataClient(API_KEY, API_SECRET)
status = market_status(client) # Use the helper function for market status
db = mongo_client.trades
asset_collection = db.assets_quantities
limits_collection = db.assets_limit
market_db = mongo_client.market_data
market_collection = market_db.market_status
indicator_tb = mongo_client.IndicatorsDatabase
indicator_collection = indicator_tb.Indicators
market_collection.update_one({}, {"$set": {"market_status": status}})
if status == "open":
if not ndaq_tickers:
logging.info("Market is open")
ndaq_tickers = get_ndaq_tickers(mongo_client, FINANCIAL_PREP_API_KEY)
sim_db = mongo_client.trading_simulator
rank_collection = sim_db.rank
r_t_c_collection = sim_db.rank_to_coefficient
for strategy in strategies:
rank = rank_collection.find_one({'strategy': strategy.__name__})['rank']
coefficient = r_t_c_collection.find_one({'rank': rank})['coefficient']
strategy_to_coefficient[strategy.__name__] = coefficient
early_hour_first_iteration = False
post_hour_first_iteration = True
trading_client = TradingClient(API_KEY, API_SECRET)
account = trading_client.get_account()
buying_power = float(account.cash)
portfolio_value = float(account.portfolio_value)
cash_to_portfolio_ratio = buying_power / portfolio_value
qqq_latest = get_latest_price('QQQ')
spy_latest = get_latest_price('SPY')
buy_heap = []
suggestion_heap = []
trades_db = mongo_client.trades
portfolio_collection = trades_db.portfolio_values
portfolio_collection.update_one({"name" : "portfolio_percentage"}, {"$set": {"portfolio_value": (portfolio_value-50491.13)/50491.13}})
portfolio_collection.update_one({"name" : "ndaq_percentage"}, {"$set": {"portfolio_value": (qqq_latest-518.58)/518.58}})
portfolio_collection.update_one({"name" : "spy_percentage"}, {"$set": {"portfolio_value": (spy_latest-591.95)/591.95}})
threads = []
for ticker in ndaq_tickers:
thread = threading.Thread(target=process_ticker, args=(ticker, client, trading_client, data_client, mongo_client, strategy_to_coefficient))
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
trading_client = TradingClient(API_KEY, API_SECRET)
account = trading_client.get_account()
while (buy_heap or suggestion_heap) and float(account.cash) > 15000 and sold is False:
try:
trading_client = TradingClient(API_KEY, API_SECRET)
account = trading_client.get_account()
print(f"Cash: {account.cash}")
if buy_heap and float(account.cash) > 15000:
_, quantity, ticker = heapq.heappop(buy_heap)
print(f"Executing BUY order for {ticker} of quantity {quantity}")
order = place_order(trading_client, symbol=ticker, side=OrderSide.BUY, quantity=quantity, mongo_client=mongo_client)
logging.info(f"Executed BUY order for {ticker}: {order}")
elif suggestion_heap and float(account.cash) > 15000:
_, quantity, ticker = heapq.heappop(suggestion_heap)
print(f"Executing BUY order for {ticker} of quantity {quantity}")
order = place_order(trading_client, symbol=ticker, side=OrderSide.BUY, quantity=quantity, mongo_client=mongo_client)
logging.info(f"Executed BUY order for {ticker}: {order}")
time.sleep(5)
"""
This is here so order will propage through and we will have an accurate cash balance recorded
"""
except:
print("Error occurred while executing buy order. Continuing...")
break
buy_heap = []
suggestion_heap = []
sold = False
print("Sleeping for 60 seconds...")
time.sleep(60)
elif status == "early_hours":
if early_hour_first_iteration:
ndaq_tickers = get_ndaq_tickers(mongo_client, FINANCIAL_PREP_API_KEY)
sim_db = mongo_client.trading_simulator
rank_collection = sim_db.rank
r_t_c_collection = sim_db.rank_to_coefficient
for strategy in strategies:
rank = rank_collection.find_one({'strategy': strategy.__name__})['rank']
coefficient = r_t_c_collection.find_one({'rank': rank})['coefficient']
strategy_to_coefficient[strategy.__name__] = coefficient
early_hour_first_iteration = False
post_hour_first_iteration = True
logging.info("Market is in early hours. Waiting for 60 seconds.")
time.sleep(30)
elif status == "closed":
if post_hour_first_iteration:
early_hour_first_iteration = True
post_hour_first_iteration = False
logging.info("Market is closed. Performing post-market operations.")
time.sleep(30)
else:
logging.error("An error occurred while checking market status.")
time.sleep(60)
if __name__ == "__main__":
main()