-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCode3_basic_ML.py
1028 lines (753 loc) · 33.6 KB
/
Code3_basic_ML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#Step 1: Uploading Files with Both Ensembl and Uniprot IDs
from google.colab import files
import io
import pandas as pd
import numpy as np
#Load data
uploaded = files.upload()
df = pd.read_csv(io.BytesIO(uploaded['merged_df_with_categories.csv']))
#Step 2: Breaking down the database
import pandas as pd
import zipfile
import numpy as np
from sklearn.preprocessing import StandardScaler
# Load the merged dataframe with categories
df = pd.read_csv('merged_df_with_categories.csv')
# Count the number of proteins in each category
category_counts = df['Category'].value_counts()
# Get the top 5 categories (including 'Others')
top_categories = category_counts.index[:5].tolist()
# If 'Others' not in the top 5, append it to the list
if 'Others' not in top_categories:
top_categories.append('Others')
# Assign 'Others' to the proteins that are not in the top 5 categories
df.loc[~df['Category'].isin(top_categories), 'Category'] = 'Others'
# Get unique categories
categories = df['Category'].unique()
# Initialize a list to store csv file names
csv_files = []
# Write separate CSV file for each category
for category in categories:
filename = f'merged_df_{category.replace(" ", "_")}.csv'
df_category = df[df['Category'] == category]
df_category.to_csv(filename, index=False)
csv_files.append(filename)
print(f"Category '{category}' has {len(df_category)} proteins.")
# Create a ZipFile object
zip_filename = 'Grouped_Proteomics_Repository.zip'
with zipfile.ZipFile(zip_filename, 'w') as zipf:
# Add each csv file to the zip file
for file in csv_files:
zipf.write(file)
print(f'Separate CSV files have been written for the following categories: {", ".join(categories)}')
print(f'All CSV files are also available in the zip file: {zip_filename}')
from google.colab import files
files.download('Grouped_Proteomics_Repository.zip')
#Step 3: Random forest for the combined dataset with hyper parameter tunning
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold, train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, f1_score
import seaborn as sns
import matplotlib.pyplot as plt
import zipfile
# Load the dataframe
df = pd.read_csv('merged_df_with_categories.csv')
# Transpose the dataframe and drop unwanted columns
df = df.transpose()
df = df.drop(['Ensembl_ID', 'Uniprot_ID', 'Category'])
# Initialize label encoder
le = LabelEncoder()
# Group conditions by removing the dash and numbers after it
conditions = df.index.str.split('-').str[0].to_list()
# Apply label encoding to the conditions
y = le.fit_transform(conditions)
# Extract features
X = df.values
# Scale the data
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Initialize a base Random Forest classifier
clf = RandomForestClassifier(random_state=42)
# K-Fold Cross Validation
kf = KFold(n_splits=3, shuffle=True, random_state=42)
# Define hyperparameters to tune
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
print("Starting Grid Search for hyperparameter tuning...")
# Grid Search for hyperparameter tuning with verbose set to 3 for more detailed updates
grid_search = GridSearchCV(clf, param_grid, cv=kf, scoring='accuracy', n_jobs=-1, verbose=3)
grid_search.fit(X_train, y_train)
print("Grid Search completed!")
print(f"Best hyperparameters found: {grid_search.best_params_}")
print(f"Best cross-validation accuracy score: {grid_search.best_score_:.4f}")
# Evaluate the best model on the test set
best_rf = grid_search.best_estimator_
y_pred = best_rf.predict(X_test)
# Print model performance
print("\nModel Performance on Test Set:")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("F1 Score:", f1_score(y_test, y_pred, average='micro'))
print("Classification Report:")
print(classification_report(y_test, y_pred, zero_division=0))
# All unique classes in the dataset
all_classes = np.unique(y)
confusion = confusion_matrix(y_test, y_pred, labels=all_classes)
# Plotting the confusion matrix
all_class_names = le.inverse_transform(np.unique(y))
plt.figure(figsize=(10,7))
sns.heatmap(confusion, annot=True, fmt="d", cmap='Blues', xticklabels=all_class_names, yticklabels=all_class_names)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Random Forest Confusion Matrix Heatmap with Hyper Tuning')
# Save the heatmap as an SVG file
file_name = 'Merged_RF_confusion_matrix_HyperTunned.svg'
plt.savefig(file_name, format='svg')
plt.show() # This will display the heatmap
# Create a ZIP file with the generated SVG plot
svg_files = [file_name]
zip_file_name = 'Merged_RF_confusion_matrix_HyperTunned.zip'
with zipfile.ZipFile(zip_file_name, 'w') as zipf:
for file in svg_files:
zipf.write(file, arcname=file)
files.download('/content/Merged_RF_confusion_matrix_HyperTunned.zip')
#Step 4: RandomForest Feature selection
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
# Load the scaled and merged file
df = pd.read_csv('merged_df_with_categories.csv', index_col='Ensembl_ID')
# Drop duplicate proteins based on Ensembl_ID and Uniprot_ID
df = df.drop_duplicates(subset=['Uniprot_ID'], keep='first')
# Drop Uniprot_ID and Category columns for the feature selection process
X = df.drop(columns=['Uniprot_ID', 'Category'])
# Initialize label encoder
le = LabelEncoder()
# Function to extract conditions from the columns
def extract_condition(column):
return column.rsplit('-', 1)[0] # Split based on last dash to remove repeat numbers
# Create labels from column
conditions = [extract_condition(col) for col in X.columns]
y = le.fit_transform(conditions)
# Separate features
X = X.T.values # Transpose the dataframe to match conditions with features
# Initialize the selector
selector = SelectFromModel(estimator=RandomForestClassifier(n_estimators=100, random_state=42))
# Fit the selector to the data
selector.fit(X, y)
# Get a mask, or boolean array, of the features selected
mask = selector.get_support()
# Apply the mask to get the selected features
selected_features = df.index[mask]
# Create a new DataFrame with only the selected features
feature_selected_df = df.loc[selected_features]
# Print some information
print("Number of features selected:", len(selected_features))
print("Accuracy of model with selected features: ", cross_val_score(selector.estimator_, X[:, mask], y, cv=5).mean())
print("Selected features:\n", selected_features)
# Save DataFrame to CSV
feature_selected_df.to_csv('feature_selected_df.csv')
#Step 5: Random Forest ML model for Feature selected version with hyper parameter tunning
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold, train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, f1_score
import seaborn as sns
import matplotlib.pyplot as plt
# Load the dataframe
df = pd.read_csv('feature_selected_df.csv')
# Transpose the dataframe and drop unwanted columns
df = df.transpose()
df = df.drop(['Ensembl_ID', 'Uniprot_ID', 'Category'])
# Initialize label encoder
le = LabelEncoder()
# Group conditions by removing the dash and numbers after it
conditions = df.index.str.split('-').str[0].to_list()
# Apply label encoding to the conditions
y = le.fit_transform(conditions)
# Extract features
X = df.values
# Scale the data
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Initialize a base Random Forest classifier
clf = RandomForestClassifier(random_state=42)
# K-Fold Cross Validation
kf = KFold(n_splits=3, shuffle=True, random_state=42)
# Define hyperparameters to tune
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
print("Starting Grid Search for hyperparameter tuning...")
# Grid Search for hyperparameter tuning with verbose set to 3 for more detailed updates
grid_search = GridSearchCV(clf, param_grid, cv=kf, scoring='accuracy', n_jobs=-1, verbose=3)
grid_search.fit(X_train, y_train)
print("Grid Search completed!")
print(f"Best hyperparameters found: {grid_search.best_params_}")
print(f"Best cross-validation accuracy score: {grid_search.best_score_:.4f}")
# Evaluate the best model on the test set
best_rf = grid_search.best_estimator_
y_pred = best_rf.predict(X_test)
# Print model performance
print("\nModel Performance on Test Set:")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("F1 Score:", f1_score(y_test, y_pred, average='micro'))
print("Classification Report:")
print(classification_report(y_test, y_pred, zero_division=0))
# All unique classes in the dataset
all_classes = np.unique(y)
confusion = confusion_matrix(y_test, y_pred, labels=all_classes)
# Plotting the confusion matrix
all_class_names = le.inverse_transform(np.unique(y))
plt.figure(figsize=(10,7))
sns.heatmap(confusion, annot=True, fmt="d", cmap='Blues', xticklabels=all_class_names, yticklabels=all_class_names)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Random Forest Confusion Matrix Heatmap with Hyper Tuning for FS')
# Save the heatmap as an SVG file
file_name = 'FS_Merged_RF_confusion_matrix_HyperTunned.svg'
plt.savefig(file_name, format='svg')
plt.show() # This will display the heatmap
# Create a ZIP file with the generated SVG plot
svg_files = [file_name]
zip_file_name = 'FS_Merged_RF_confusion_matrix_HyperTunned.zip'
with zipfile.ZipFile(zip_file_name, 'w') as zipf:
for file in svg_files:
zipf.write(file, arcname=file) # arcname parameter sets the name for the file inside the ZIP
files.download('/content/FS_Merged_RF_confusion_matrix_HyperTunned.zip')
#Step 6: Feature selection with 25, 50, and 75% retention of proteins for ablation study
import pandas as pd
from sklearn.ensemble import RandomForestClassifier
from sklearn.feature_selection import SelectFromModel
from sklearn.model_selection import cross_val_score
from sklearn.preprocessing import LabelEncoder
import numpy as np
# Load the scaled and merged file
df = pd.read_csv('merged_df_with_categories.csv', index_col='Ensembl_ID')
# Drop duplicate proteins based on Ensembl_ID and Uniprot_ID
df = df.drop_duplicates(subset=['Uniprot_ID'], keep='first')
# Drop Uniprot_ID and Category columns for the feature selection process
X = df.drop(columns=['Uniprot_ID', 'Category'])
# Initialize label encoder
le = LabelEncoder()
# Function to extract conditions from the columns
def extract_condition(column):
return column.rsplit('-', 1)[0] # Split based on last dash to remove repeat numbers
# Create labels from columns
conditions = [extract_condition(col) for col in X.columns]
y = le.fit_transform(conditions)
# Separate features
X = X.T.values # Transpose the dataframe to match conditions with features
# Initialize the selector
selector = RandomForestClassifier(n_estimators=100, random_state=42)
# Fit the selector to the data
selector.fit(X, y)
# Get feature importances
importances = selector.feature_importances_
# Sort features by importance
indices = np.argsort(importances)[::-1]
# Calculate the number of features to select for 25%, 50%, and 75% retention
n_features = len(importances)
n_25 = int(n_features * 0.25)
n_50 = int(n_features * 0.50)
n_75 = int(n_features * 0.75)
# Select top features for each retention level
selected_features_25 = df.index[indices[:n_25]]
selected_features_50 = df.index[indices[:n_50]]
selected_features_75 = df.index[indices[:n_75]]
# Create new DataFrames for each retention level
feature_selected_df_25 = df.loc[selected_features_25]
feature_selected_df_50 = df.loc[selected_features_50]
feature_selected_df_75 = df.loc[selected_features_75]
# Save DataFrames to CSV
feature_selected_df_25.to_csv('feature_selected_df_25.csv')
feature_selected_df_50.to_csv('feature_selected_df_50.csv')
feature_selected_df_75.to_csv('feature_selected_df_75.csv')
# Print some information
print("Number of features selected (25%):", len(selected_features_25))
print("Number of features selected (50%):", len(selected_features_50))
print("Number of features selected (75%):", len(selected_features_75))
print("Accuracy of model with 25% selected features: ", cross_val_score(selector, X[:, indices[:n_25]], y, cv=5).mean())
print("Accuracy of model with 50% selected features: ", cross_val_score(selector, X[:, indices[:n_50]], y, cv=5).mean())
print("Accuracy of model with 75% selected features: ", cross_val_score(selector, X[:, indices[:n_75]], y, cv=5).mean())
#Step 7: Random Forest ML model for ablation study
!pip install memory_profiler
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold, train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, f1_score
import seaborn as sns
import matplotlib.pyplot as plt
import zipfile
from google.colab import files
import time
from memory_profiler import memory_usage
# Function to measure the memory usage and execution time
def profile_function(func):
def wrapper(*args, **kwargs):
start_time = time.time()
mem_usage_before = memory_usage()[0]
result = func(*args, **kwargs)
mem_usage_after = memory_usage()[0]
end_time = time.time()
print(f"Memory usage before: {mem_usage_before} MB")
print(f"Memory usage after: {mem_usage_after} MB")
print(f"Memory usage increased by: {mem_usage_after - mem_usage_before} MB")
print(f"Execution time: {end_time - start_time} seconds")
return result
return wrapper
# List of feature-selected files
feature_selected_files = ['feature_selected_df_25.csv', 'feature_selected_df_50.csv', 'feature_selected_df_75.csv']
@profile_function
def process_file(file):
print(f"\nProcessing {file}...")
# Load the dataframe
df = pd.read_csv(file)
# Transpose the dataframe and drop unwanted columns
df = df.transpose()
df = df.drop(['Ensembl_ID', 'Uniprot_ID', 'Category'])
# Initialize label encoder
le = LabelEncoder()
# Group conditions by removing the dash and numbers after it
conditions = df.index.str.split('-').str[0].to_list()
# Apply label encoding to the conditions
y = le.fit_transform(conditions)
# Extract features
X = df.values
# Scale the data
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Initialize a base Random Forest classifier
clf = RandomForestClassifier(random_state=42)
# K-Fold Cross Validation
kf = KFold(n_splits=3, shuffle=True, random_state=42)
# Define hyperparameters to tune
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
print("Starting Grid Search for hyperparameter tuning...")
# Grid Search for hyperparameter tuning with verbose set to 3 for more detailed updates
grid_search = GridSearchCV(clf, param_grid, cv=kf, scoring='accuracy', n_jobs=-1, verbose=3)
grid_search.fit(X_train, y_train)
print("Grid Search completed!")
print(f"Best hyperparameters found: {grid_search.best_params_}")
print(f"Best cross-validation accuracy score: {grid_search.best_score_:.4f}")
# Evaluate the best model on the test set
best_rf = grid_search.best_estimator_
y_pred = best_rf.predict(X_test)
# Print model performance
print("\nModel Performance on Test Set:")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("F1 Score:", f1_score(y_test, y_pred, average='micro'))
print("Classification Report:")
print(classification_report(y_test, y_pred, zero_division=0))
# All unique classes in the dataset
all_classes = np.unique(y)
confusion = confusion_matrix(y_test, y_pred, labels=all_classes)
# Plotting the confusion matrix
all_class_names = le.inverse_transform(np.unique(y))
plt.figure(figsize=(10,7))
sns.heatmap(confusion, annot=True, fmt="d", cmap='Blues', xticklabels=all_class_names, yticklabels=all_class_names)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title(f'Random Forest Confusion Matrix Heatmap with Hyper Tuning for {file}')
# Save the heatmap as an SVG file
file_name = f'FS_{file}_RF_confusion_matrix_HyperTunned.svg'
plt.savefig(file_name, format='svg')
plt.show() # This will display the heatmap
# Create a ZIP file with the generated SVG plot
svg_files = [file_name]
zip_file_name = f'FS_{file}_RF_confusion_matrix_HyperTunned.zip'
with zipfile.ZipFile(zip_file_name, 'w') as zipf:
for svg_file in svg_files:
zipf.write(svg_file, arcname=svg_file)
files.download(f'/content/{zip_file_name}')
# Process each feature-selected file and profile memory and time
for file in feature_selected_files:
process_file(file)
#Step 8: Random Forest ML model for cellular component categories with hyper parameter tunning
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, KFold, GridSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, confusion_matrix, classification_report
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import zipfile
import glob
from google.colab import files
csv_files = [
'merged_df_Cytoplasm.csv',
'merged_df_Extracellular_Space.csv',
'merged_df_Membrane.csv',
'merged_df_Nucleus.csv',
'merged_df_Others.csv'
]
svg_files = []
def process_and_train(file):
df = pd.read_csv(file)
df = df.drop(['Ensembl_ID', 'Uniprot_ID', 'Category'], axis=1)
df = df.transpose()
le = LabelEncoder()
conditions = df.index.str.split('-').str[0].to_list()
y = le.fit_transform(conditions)
X = df.values
scaler = StandardScaler()
X = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42, stratify=y)
kf = KFold(n_splits=3, shuffle=True, random_state=42)
clf = RandomForestClassifier(random_state=42)
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
grid_search = GridSearchCV(clf, param_grid, cv=kf, scoring='accuracy', n_jobs=-1, verbose=2)
grid_search.fit(X_train, y_train)
best_rf = grid_search.best_estimator_
# Predict using the best model on the test set
y_pred = best_rf.predict(X_test)
all_class_names = le.classes_ # Get all class names from the label encoder
cm = confusion_matrix(y_test, y_pred, labels=le.transform(all_class_names))
accuracy = accuracy_score(y_test, y_pred)
print(f"\nModel Performance for {file}:")
print(f"Best Hyperparameters: {grid_search.best_params_}")
print(f"Accuracy on Test Set: {accuracy*100:.2f}%")
print(classification_report(y_test, y_pred, target_names=all_class_names))
plt.figure(figsize=(10,7))
sns.heatmap(cm, annot=True, fmt="d", cmap='Blues', xticklabels=all_class_names, yticklabels=all_class_names)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title(f'Confusion Matrix Heatmap for {file}')
svg_file_name = file.split('.')[0] + '_heatmap.svg'
plt.savefig(svg_file_name, format='svg')
plt.show()
svg_files.append(svg_file_name)
# Process each file and train
for file in csv_files:
process_and_train(file)
# ZIP the SVG plots
zip_file_name = 'Component_plots_HyperTunned.zip'
with zipfile.ZipFile(zip_file_name, 'w') as zipf:
for svg_file in svg_files:
zipf.write(svg_file, arcname=svg_file)
files.download('/content/Component_plots_HyperTunned.zip')
#Step 9: Feature selection using PCA
!pip install kneed
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from google.colab import files
import matplotlib.pyplot as plt
# Load the scaled and merged file
df = pd.read_csv('merged_df_with_categories.csv', index_col='Ensembl_ID')
# Drop duplicate proteins based on Ensembl_ID and Uniprot_ID
df = df.drop_duplicates(subset=['Uniprot_ID'], keep='first')
# Drop Uniprot_ID and Category columns for the feature selection process
X = df.drop(columns=['Uniprot_ID', 'Category'])
# Separate features
X = X.T.values # Transpose the dataframe to match conditions with features
# Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Apply PCA
pca = PCA()
pca.fit(X_scaled)
# Calculate explained variance ratio
explained_variance_ratio = pca.explained_variance_ratio_
# Function to find the cutoff point
def find_cutoff(explained_variance_ratio, threshold=0.001):
differences = np.diff(explained_variance_ratio)
cutoff = np.where(differences < threshold)[0][0] + 1
return min(cutoff, len(explained_variance_ratio) // 2) # Cap at 50% of components
# Find the optimal number of components
n_components_optimal = find_cutoff(explained_variance_ratio)
# Get the feature importances based on the absolute sum of loadings for the optimal components
feature_importance = np.sum(np.abs(pca.components_[:n_components_optimal]), axis=0)
feature_importance = feature_importance / np.sum(feature_importance)
# Select features based on importance
importance_threshold = np.mean(feature_importance) # Use mean importance as threshold
selected_features_mask = feature_importance > importance_threshold
selected_features = df.index[selected_features_mask]
# Create a new DataFrame with only the selected features
feature_selected_df = df.loc[selected_features]
# Print some information
print(f"Total number of features: {X.shape[1]}")
print(f"Number of components selected: {n_components_optimal}")
print("Number of features selected:", len(selected_features))
print("Selected features:\n", selected_features)
# Plot the explained variance ratio
plt.figure(figsize=(12, 6))
plt.plot(range(1, len(explained_variance_ratio)+1), explained_variance_ratio, 'b-')
plt.plot(range(1, len(explained_variance_ratio)+1), np.cumsum(explained_variance_ratio), 'r-')
plt.xlabel('Number of Components')
plt.ylabel('Explained Variance Ratio')
plt.title('Explained Variance Ratio and Cumulative Explained Variance vs Number of Components')
plt.axvline(x=n_components_optimal, color='g', linestyle='--', label=f'Selected components: {n_components_optimal}')
plt.legend(['Individual', 'Cumulative', 'Cutoff'])
plt.grid(True)
plt.tight_layout()
# Save the plot as SVG
svg_filename = 'pca_explained_variance_plot.svg'
plt.savefig(svg_filename, format='svg')
print(f"Explained variance plot saved as '{svg_filename}'")
# Save DataFrame to CSV
csv_filename = 'pca_feature_selected_df.csv'
feature_selected_df.to_csv(csv_filename)
print(f"CSV file '{csv_filename}' has been created with the selected features.")
# Download the new CSV file and the SVG plot
files.download(csv_filename)
files.download(svg_filename)
#Step 10: Random Forest ML model for PCA-Selected Features
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold, train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, f1_score
import seaborn as sns
import matplotlib.pyplot as plt
import zipfile
from google.colab import files
# Load the dataframe
df = pd.read_csv('pca_feature_selected_df.csv')
# Transpose the dataframe and drop unwanted columns
df = df.transpose()
df = df.drop(['Ensembl_ID', 'Uniprot_ID', 'Category'])
# Initialize label encoder
le = LabelEncoder()
# Group conditions by removing the dash and numbers after it
conditions = df.index.str.split('-').str[0].to_list()
# Apply label encoding to the conditions
y = le.fit_transform(conditions)
# Extract features
X = df.values
# Scale the data
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Initialize a base Random Forest classifier
clf = RandomForestClassifier(random_state=42)
# K-Fold Cross Validation
kf = KFold(n_splits=3, shuffle=True, random_state=42)
# Define hyperparameters to tune
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
print("Starting Grid Search for hyperparameter tuning...")
# Grid Search for hyperparameter tuning with verbose set to 3 for more detailed updates
grid_search = GridSearchCV(clf, param_grid, cv=kf, scoring='accuracy', n_jobs=-1, verbose=3)
grid_search.fit(X_train, y_train)
print("Grid Search completed!")
print(f"Best hyperparameters found: {grid_search.best_params_}")
print(f"Best cross-validation accuracy score: {grid_search.best_score_:.4f}")
# Evaluate the best model on the test set
best_rf = grid_search.best_estimator_
y_pred = best_rf.predict(X_test)
# Print model performance
print("\nModel Performance on Test Set:")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("F1 Score:", f1_score(y_test, y_pred, average='micro'))
print("Classification Report:")
print(classification_report(y_test, y_pred, zero_division=0))
# All unique classes in the dataset
all_classes = np.unique(y)
confusion = confusion_matrix(y_test, y_pred, labels=all_classes)
# Plotting the confusion matrix
all_class_names = le.inverse_transform(np.unique(y))
plt.figure(figsize=(10,7))
sns.heatmap(confusion, annot=True, fmt="d", cmap='Blues', xticklabels=all_class_names, yticklabels=all_class_names)
plt.xlabel('Predicted Labels')
plt.ylabel('True Labels')
plt.title('Random Forest Confusion Matrix Heatmap with Hyper Tuning for PCA-FS')
# Save the plot as SVG file
svg_file_name = 'PCA_FS_Merged_RF_confusion_matrix_HyperTunned.svg'
plt.savefig(svg_file_name, format='svg')
# Create a ZIP file with the generated SVG plot
zip_file_name = 'PCA_FS_Merged_RF_confusion_matrix_HyperTunned.zip'
with zipfile.ZipFile(zip_file_name, 'w') as zipf:
zipf.write(svg_file_name, arcname=svg_file_name) # arcname parameter sets the name for the file inside the ZIP
files.download(zip_file_name)
#Step 11: Feature selection using LDA
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.preprocessing import LabelEncoder
from google.colab import files
import matplotlib.pyplot as plt
# Load the scaled and merged file
df = pd.read_csv('merged_df_with_categories.csv', index_col='Ensembl_ID')
# Drop duplicate proteins based on Ensembl_ID and Uniprot_ID
df = df.drop_duplicates(subset=['Uniprot_ID'], keep='first')
# Drop Uniprot_ID and Category columns for the feature selection process
X = df.drop(columns=['Uniprot_ID', 'Category'])
# Initialize label encoder
le = LabelEncoder()
# Function to extract conditions from the columns
def extract_condition(column):
return column.rsplit('-', 1)[0] # Split based on last dash to remove repeat numbers
# Create labels from column
conditions = [extract_condition(col) for col in X.columns]
y = le.fit_transform(conditions)
# Separate features
X = X.T.values # Transpose the dataframe to match conditions with features
# Standardize the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Apply LDA with SVD solver
n_components = min(len(np.unique(y)) - 1, X_scaled.shape[1])
lda = LinearDiscriminantAnalysis(n_components=n_components, solver='svd')
X_lda = lda.fit_transform(X_scaled, y)
# Get the feature importances based on LDA coefficients
feature_importance = np.sum(np.abs(lda.coef_), axis=0)
feature_importance = feature_importance / np.sum(feature_importance)
# Sort features by importance
sorted_idx = np.argsort(feature_importance)[::-1]
sorted_importance = feature_importance[sorted_idx]
# Calculate cumulative explained variance ratio
cumulative_importance = np.cumsum(sorted_importance)
# Find the optimal number of features (95% explained variance)
threshold = 0.95
n_features_optimal = np.where(cumulative_importance >= threshold)[0][0] + 1
print(f"Optimal number of features: {n_features_optimal}")
# Select the optimal number of features
selected_features_mask = sorted_idx[:n_features_optimal]
# Get the selected features
selected_features = df.index[selected_features_mask]
# Create a new DataFrame with only the selected features
feature_selected_df = df.loc[selected_features]
# Print some information
print("Number of features selected:", len(selected_features))
print("Cumulative explained variance ratio:", cumulative_importance[n_features_optimal-1])
print("Selected features:\n", selected_features)
# Plot the cumulative explained variance ratio
plt.figure(figsize=(10, 6))
plt.plot(range(1, len(cumulative_importance)+1), cumulative_importance)
plt.xlabel('Number of Features')
plt.ylabel('Cumulative Explained Variance Ratio')
plt.title('Cumulative Explained Variance Ratio vs Number of Features')
plt.axvline(x=n_features_optimal, color='r', linestyle='--', label=f'Optimal number of features: {n_features_optimal}')
plt.axhline(y=threshold, color='g', linestyle='--', label=f'Threshold: {threshold}')
plt.legend()
plt.grid(True)
plt.tight_layout()
# Save the plot as SVG
svg_filename = 'LDA_cumulative_variance_plot.svg'
plt.savefig(svg_filename, format='svg')
print(f"Cumulative variance plot saved as '{svg_filename}'")
# Save DataFrame to CSV
csv_filename = 'lda_feature_selected_df.csv'
feature_selected_df.to_csv(csv_filename)
print(f"CSV file '{csv_filename}' has been created with the selected features.")
# Download the new CSV file and the SVG plot
files.download(csv_filename)
files.download(svg_filename)
#Step 12: Random Forest ML model for RDA-Selected Features
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import KFold, train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix, f1_score
import seaborn as sns
import matplotlib.pyplot as plt
import zipfile
from google.colab import files
# Load the dataframe
df = pd.read_csv('lda_feature_selected_df.csv')
# Transpose the dataframe and drop unwanted columns
df = df.transpose()
df = df.drop(['Ensembl_ID', 'Uniprot_ID', 'Category'])
# Initialize label encoder
le = LabelEncoder()
# Group conditions by removing the dash and numbers after it
conditions = df.index.str.split('-').str[0].to_list()
# Apply label encoding to the conditions
y = le.fit_transform(conditions)
# Extract features
X = df.values
# Scale the data
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Train/test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Initialize a base Random Forest classifier
clf = RandomForestClassifier(random_state=42)
# K-Fold Cross Validation
kf = KFold(n_splits=3, shuffle=True, random_state=42)
# Define hyperparameters to tune
param_grid = {
'n_estimators': [50, 100, 200],
'max_depth': [None, 10, 20, 30],
'min_samples_split': [2, 5, 10],
'min_samples_leaf': [1, 2, 4]
}
print("Starting Grid Search for hyperparameter tuning...")
# Grid Search for hyperparameter tuning with verbose set to 3 for more detailed updates
grid_search = GridSearchCV(clf, param_grid, cv=kf, scoring='accuracy', n_jobs=-1, verbose=3)
grid_search.fit(X_train, y_train)
print("Grid Search completed!")
print(f"Best hyperparameters found: {grid_search.best_params_}")
print(f"Best cross-validation accuracy score: {grid_search.best_score_:.4f}")
# Evaluate the best model on the test set
best_rf = grid_search.best_estimator_
y_pred = best_rf.predict(X_test)
# Print model performance
print("\nModel Performance on Test Set:")
print("Accuracy:", accuracy_score(y_test, y_pred))
print("F1 Score:", f1_score(y_test, y_pred, average='micro'))
print("Classification Report:")