-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDijkstra.py
237 lines (207 loc) · 9.03 KB
/
Dijkstra.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
"""
@version: python3.6
@author: Fieldhunter
@contact: 1677532160yuan@gmail.com
@time: 2020-05-03
"""
import functools
class Dijkstra_Node():
"""
Self.value is used to store the weight
between the node and the pointing node.
"""
def __init__(self, element):
self.data = element
self.value = []
# Implement a small top heap for priority queue of Dijkstra
class Heap():
def __init__(self):
self.data = [None]
"""
The small top heap stores a tuple with two values.
The first is the corresponding subscript of the node in the adjacency list.
The second is the distance between the node and the starting node
in Dijkstra, that is, the value of the node's subscript in the
following vertex array.
The small top heap is heaped up with the second value.
"""
def add_data(self, element):
self.data.append(element)
index = len(self.data) - 1
while index > 1:
if self.data[index][1] < self.data[index//2][1]:
self.data[index], self.data[index//2] = \
self.data[index//2], self.data[index]
index //= 2
else:
break
def get_top_element(self):
num = len(self.data) - 1
self.data[num], self.data[1] = self.data[1], self.data[num]
"""
When getting the heap top element, only the corresponding
subscript of the node in the adjacency list is returned.
"""
top_element = self.data[-1][0]
del self.data[-1]
num -= 1
self.__heap_up_down(self.data, num)
return top_element
# Heap up from top to bottom
def __heap_up_down(self, data, num, index=1):
while (2*index) <= num:
# Both child nodes exist
if (2*index+1) <= num:
if data[2*index][1] <= data[index][1]:
if data[2*index+1][1] < data[index][1]:
if data[2*index][1] < data[2*index+1][1]:
data[index], data[2*index] = data[2*index], data[index]
index *= 2
else:
data[index], data[2*index+1] = data[2*index+1], data[index]
index = 2 * index + 1
else:
data[index], data[2*index] = data[2*index], data[index]
index *= 2
elif data[2*index+1][1] < data[index][1]:
data[index], data[2*index+1] = data[2*index+1], data[index]
index = 2 * index + 1
else:
break
# only exist left child node
else:
if data[2*index][1] <= data[index][1]:
data[index], data[2*index] = data[2*index], data[index]
index *= 2
else:
break
class Adjacency_list():
"""
Self.__mapping is used to record the corresponding relationship
between node value and node ordinal number.
In self.__data,using node ordinal number express pointing relationship.
Self.__node_mapping is used to store the corresponding relationship
between node and node ordinal number.
"""
def __init__(self):
self.__data = {}
self.__node_mapping = []
self.__mapping = []
def add_data(self, start, end, weight):
start, end = str(start), str(end)
if start not in self.__mapping:
new_node = Dijkstra_Node(start)
self.__node_mapping.append(new_node)
self.__mapping.append(start)
start_num = len(self.__mapping) - 1
else:
start_num = self.__mapping.index(start)
if end not in self.__mapping:
new_node = Dijkstra_Node(end)
self.__node_mapping.append(new_node)
self.__mapping.append(end)
end_num = len(self.__mapping) - 1
else:
end_num = self.__mapping.index(end)
if not self.__data.get(start_num, False):
new_list = [end_num]
self.__data[start_num] = new_list
self.__node_mapping[start_num].value.append(weight)
else:
"""
If there is already a corresponding relationship between
the start node and the end node, the weights between them
will be updated.
"""
if end_num in self.__data[start_num]:
pointer = self.__data[start_num].index(end_num)
self.__node_mapping[start_num].value[pointer] = weight
else:
self.__data[start_num].append(end_num)
self.__node_mapping[start_num].value.append(weight)
# Dijkstra algorithm
def dijkstra(self, start, end):
start,end = str(start),str(end)
if start not in self.__mapping or end not in self.__mapping:
print("No target data in map")
else:
"""
Initialization part:
Vertex array is used to store the distance between a subscript node and
the starting node. It is recorded as dist, and None represents infinity.
Predicessor array is used to store the predecessor nodes of each node and
output the path.
Inqueue array is used to avoid adding a vertex to the priority queue
multiple times.
Level_queue is the priority queue.
"""
start_num, end_num = self.__mapping.index(start), self.__mapping.index(end)
vertexes = [None] * len(self.__mapping)
predecessor = [-1] * len(self.__mapping)
inqueue = [False] * len(self.__mapping)
level_queue = Heap()
find = False
# Process the starting node first and put it into the priority queue.
vertexes[start_num] = 0
level_queue.add_data((start_num, vertexes[start_num]))
inqueue[start_num] = True
while len(level_queue.data) > 1:
# Take out a node with the shortest distance from the starting node.
minvertex = level_queue.get_top_element()
"""
If the end node exits the queue, then the shortest path is found,
and the loop exits.
"""
if minvertex == end_num:
find = True
break
if self.__data.get(minvertex, False):
# Traversing the output node of minvertex
for num, i in enumerate(self.__data.get(minvertex)):
if vertexes[i] == None or vertexes[minvertex] + \
self.__node_mapping[minvertex].value[num] < vertexes[i]:
"""
If the dist value of minvertex plus the weight between two nodes
is less than the dist value of the outgoing node or the dist value
of the outgoing node is None, the dist value of the outgoing node
is updated, and the predecessor node is updated at the same time.
"""
vertexes[i] = vertexes[minvertex] + \
self.__node_mapping[minvertex].value[num]
predecessor[i] = minvertex
"""
Determine whether the outgoing node has previously been added to
the priority queue. If not, add it.
"""
if inqueue[i] == False:
level_queue.add_data((i, vertexes[i]))
inqueue[i] = True
# If the path is found, traverse the predecess array output.
if find:
pointer = predecessor[end_num]
result = [self.__mapping[end_num]]
while pointer != -1:
result.insert(0, self.__mapping[pointer])
pointer = predecessor[pointer]
print(result)
else:
print("No way from start to end")
"""
Check if the code used to access the class information,Decorator function.
The purpose of simply adding code is to prevent Adjacency list from
being tampered with maliciously and to provide the API for developers.
"""
def __check_code(func):
@functools.wraps(func)
def check(self, code):
if code != 'adsf;{h3096j34ka`fd>&/edgb^45:6':
raise Exception('code is wrong!')
result = func(self, code)
return result
return check
@__check_code
def return_data(self, code):
return self.__data
@__check_code
def return_mapping(self, code):
return self.__mapping, self.__node_mapping