-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathONDeepSet.py
193 lines (170 loc) · 7.1 KB
/
ONDeepSet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import torch
from typing import Final
import torch.nn as nn
from MaskedReduce import reduce_dict
from InputEncoder import QInputEncoder
from PermEquiLayer import PermEquiLayer
from utils import MLP
import torch.nn.functional as F
from PST import svMix, VMean, VNorm, Imod
class GlobalAggr(nn.Module):
def __init__(self, hiddim, **kwargs) -> None:
super().__init__()
self.scalar = PermEquiLayer(hiddim, hiddim, "deepset", True, **kwargs["permlayer"])
self.linv1 = nn.Linear(hiddim, hiddim, False)
self.linv2 = nn.Linear(hiddim, hiddim, False)
self.linv3 = nn.Linear(hiddim, hiddim, False)
def forward(self, s, v, nodemask):
'''
s (B, N, d)
v (B, N, M, d)
nodemask (B, N)
gsize (B, )
return (B, d), (B, M, d), (B, M, M, d)
'''
gs = self.scalar.forward(s, nodemask)
gv = self.linv3(v.sum(dim=1))
gv2 = torch.einsum("bnad,bncd->bacd", self.linv1(v), self.linv2(v))
return gs, gv, gv2
class Tprod(nn.Module):
def __init__(self, hiddim, **kwargs) -> None:
super().__init__()
self.lin1 = nn.Linear(hiddim, hiddim)
self.lin2 = nn.Linear(hiddim, hiddim)
self.lin3 = nn.Linear(hiddim, hiddim)
self.lins = MLP(hiddim, hiddim, hiddim, **kwargs["mlp"])
self.linv1 = nn.Linear(hiddim, hiddim, False)
self.linv2 = nn.Linear(hiddim, hiddim, False)
self.linv3 = nn.Linear(hiddim, hiddim, False)
def forward(self, s, v, gs, gv, gv2):
'''
s (B, N, d)
v (B, N, M, d)
nodemask (B, N)
return (B, d), (B, M, d), (B, M, M, d)
'''
v_vv2 = self.linv1(torch.einsum("bnmd,bmcd->bncd", v, gv2))
v_vs = self.linv3(gs.unsqueeze(-2).unsqueeze(-2) * v)
v_sv = self.linv2(s.unsqueeze(2)*gv.unsqueeze(1))
v = (v_vv2 + v_sv + v_vs) / 3
s_v2t = torch.einsum("bmmd->bd", gv2)
s_vv = torch.einsum("bmd,bnmd->bnd", gv, v)
s = (self.lin1(s_v2t)*gs).unsqueeze(-2)*self.lin2(s)*self.lin3(s_vv)
s = self.lins(s)
return s, v
class SimpleTprod(nn.Module):
def __init__(self, hiddim, **kwargs) -> None:
super().__init__()
self.lin1 = MLP(hiddim, hiddim, hiddim, **kwargs["mlp"])
self.lin2 = MLP(hiddim, hiddim, hiddim, **kwargs["mlp"])
self.linv1 = nn.Linear(hiddim, hiddim, False)
self.linv2 = nn.Linear(hiddim, hiddim, False)
def forward(self, s, v, gs, gv, gv2):
'''
s (B, N, d)
v (B, N, M, d)
nodemask (B, N)
return (B, d), (B, M, d), (B, M, M, d)
'''
v_vv2 = self.linv1(torch.einsum("bnmd,bmcd->bncd", v, gv2))
v = (v_vv2 + self.linv2(gv).unsqueeze(1)) / 1.414
s = (self.lin1(s) + self.lin2(gs.unsqueeze(1))) / 1.414
return s, v
class ONDeepSet(nn.Module):
elres: Final[bool]
num_layers: Final[int]
num_tasks: Final[int]
nodetask: Final[bool]
gsizenorm: Final[float]
def __init__(self,
featdim: int,
caldim: int,
hiddim: int,
outdim: int,
num_layers: int,
pool: str,
**kwargs) -> None:
super().__init__()
self.num_layers = num_layers
self.num_tasks = outdim
self.elres = kwargs["elres"]
self.nodetask = (pool=="none")
self.pool = reduce_dict[pool]
usesvmix = kwargs["usesvmix"]
self.inputencoder = QInputEncoder(featdim, hiddim,
**kwargs["inputencoder"])
self.LambdaEncoder = PermEquiLayer(hiddim, hiddim, "deepset",
False, **kwargs["l_model"])
self.gaggrs = nn.ModuleList(
[GlobalAggr(hiddim, **kwargs["gaggr"]) for _ in range(num_layers)]
)
self.svmixs = nn.ModuleList(
[svMix(hiddim, **kwargs["svmix"]) if usesvmix else Imod() for _ in range(num_layers)]
)
if kwargs["simtprod"]:
self.tprods = nn.ModuleList(
[SimpleTprod(hiddim, **kwargs["tprod"]) for _ in range(num_layers)]
)
else:
self.tprods = nn.ModuleList(
[Tprod(hiddim, **kwargs["tprod"]) for _ in range(num_layers)]
)
self.predlin = MLP(hiddim, hiddim, outdim, **kwargs["predlin"])
self.predln = nn.LayerNorm(outdim, elementwise_affine=False) if kwargs["outln"] else nn.Identity()
self.vln = nn.Sequential(VMean(hiddim) if kwargs["vmean"] else nn.Identity(), VNorm(hiddim) if kwargs["vnorm"] else nn.Identity())
self.elvln = nn.Sequential(VMean(hiddim) if kwargs["elvmean"] else nn.Identity(), VNorm(hiddim) if kwargs["elvnorm"] else nn.Identity())
self.sln = nn.LayerNorm(hiddim, elementwise_affine=False) if kwargs["snorm"] else nn.Identity()
self.gsizenorm = kwargs["gsizenorm"]
def eigenforward(self, LambdaEmb, LambdaMask, U, X, nodemask):
'''
LambdaEmb (#graph, M, d1)
LambdaMask (#graph, M)
U (#graph, N, M)
X (#graph, N, dx)
nodemask (#graph, N)
A (#graph, N, N, A)
'''
B, N, M = U.shape[0], U.shape[1], U.shape[2]
gsize = N - torch.sum(nodemask.float(), dim=1)
gsizenorm = torch.rsqrt_(gsize).pow_(self.gsizenorm).reshape(-1, 1, 1, 1)
gsizenorm_v = gsizenorm.reshape(-1, 1, 1)
LambdaEmb = self.LambdaEncoder(LambdaEmb, LambdaMask) # LambdaEmb (#graph, M, d1)
LambdaEmb = torch.where(LambdaMask.unsqueeze(-1), 0, LambdaEmb)
coord = torch.einsum("bnm...,bmd->bnmd", U, LambdaEmb) # (#graph, N, M, d)
elvlncoord = self.elvln(coord)
gs, gv, gv2 = self.gaggrs[0].forward(X, elvlncoord, nodemask)
gv2 = gv2 * gsizenorm
gv = gv * gsizenorm_v
ts, tv = self.svmixs[0](self.sln(X), self.vln(coord))
ts1, tv1 = self.tprods[0](ts, tv, gs, gv, gv2)
coord = coord + tv1
X = X + ts1.masked_fill(nodemask.unsqueeze(-1), 0)
for i in range(1, self.num_layers):
if self.elres:
elvlncoord = self.elvln(coord)
tgs, tgv, tgv2 = self.gaggrs[i](X, elvlncoord, nodemask)
tgv = tgv * gsizenorm_v
tgv2 = tgv2 * gsizenorm
gs = gs + tgs
gv = gv + tgv
gv2 = gv2 + tgv2
ts, tv = self.svmixs[i](self.sln(X), self.vln(coord))
ts = ts.masked_fill(nodemask.unsqueeze(-1), 0)
ts1, tv1 = self.tprods[i](ts, tv, gs, gv, gv2)
coord = coord + tv1
X = X + ts1.masked_fill(nodemask.unsqueeze(-1), 0)
if self.nodetask:
X = X
else:
X = self.pool(X, nodemask.unsqueeze(-1), 1)
return self.predln(self.predlin(X))
def forward(self, A, X, nodemask, *inputtuple):
'''
A (#graph, N, N)
X (#graph, N, d)
nodemask (#graph, N)
'''
pred = self.eigenforward(*self.inputencoder(A, X, nodemask, *inputtuple))
if self.nodetask:
pred = pred[torch.logical_not(nodemask)]
return pred