-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathClosestPair.py
146 lines (127 loc) · 4.41 KB
/
ClosestPair.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# -*- coding: utf-8 -*-
# @Time : 2018/10/31 上午10:37
# @Author : 韩字杰
# @Site :
# @File : ClosestPair.py
# @Software: PyCharm
# 华中科技大学算法导论实验:最小点对问题
# Huazhong University of Sci & Tech Algotithms Experiment: The Closest Pair
import math
class Pair(object):
def __init__(self,L = []):
self.L = L
#
# 首先使用快速排序方式,将点对以X轴的坐标排序好
# 函数 mQuickSort 和 mPartition 是将点对进行快速排序的算法
# mQuickSort and mPartition quick sort the pairs(x , y) by x
#
def mQuickSort(self , p , r ):
if p < r:
q = self.mPartition(p , r)
self.mQuickSort(p , q - 1)
self.mQuickSort(q + 1 , r)
return 0
def mPartition(self , p , r ):
x = self.L[r][0]
i = p - 1
j = p
while j <= r - 1:
if self.L[j][0] < x:
i = i + 1
t = self.L[i]
self.L[i] = self.L[j]
self.L[j] = t
j += 1
t = self.L[i+1]
self.L[i+1] = self.L[r]
self.L[r] = t
return i + 1
def getMinPairList(self, p , r):
"""
:param p: 点对的左边界 (left border)
:param r: 点对的右边界 (right border)
:return: 最小点对距离,最小距离点对 (Distance, (Pair,Piar)
"""
self.minDistance,tupple = self.closestPair(p,r)
self.minPairList = []
self.minPairList.append(self.L[tupple[0]])
self.minPairList.append(self.L[tupple[1]])
return self.minDistance,self.minPairList
def closestPair(self, p , r):
"""
:param p: 点对的左边界
:param r: 点对的右边界
:return: 最小的点对距离,最小点对元素下标
"""
self.mQuickSort(0,len(self.L) - 1)
x = int((p + r)/2)
if x - p <= 3 or r - x <= 3:
# When element num less than 3, Calculate the closest distance directly.
# 当左右两边元素个数少于 3 时,直接计算最小点对。
leftMin,leftPair = self.subClosest(p , x)
rightMin,rightPair = self.subClosest(x , r)
normalMin = 0
normalPair = (0,0)
if leftMin < rightMin:
normalMin , normalPair = leftMin,leftPair
else:
normalMin , normalPair = rightMin,rightPair
else:
# To calculate the minimun pair of the left or right side
# 计算左右两边的最小点对
leftMin,leftPair = self.closestPair(p , x)
rightMin,rightPair = self.closestPair(x , r)
if leftMin < rightMin:
normalMin = leftMin
normalPair = leftPair
else:
normalMin = rightMin
normalPair = rightPair
# To calculate the minimum pair of the cross ones
# 计算中间部分的最小点对
tMiddleLeft = x - 1
tMiddleRight = x + 1
while self.L[x][0] - self.L[tMiddleLeft][0] < normalMin and tMiddleLeft > p:
tMiddleLeft -= 1
while self.L[tMiddleRight][0] - self.L[x][0] < normalMin and tMiddleRight < r:
tMiddleRight += 1
tMiddleLeft += 1
tMiddleRight += 1
crossMin = normalMin
crossPair = normalPair
if tMiddleLeft != tMiddleRight:
crossMin,crossPair = self.subClosest(tMiddleLeft,tMiddleRight)
if crossMin < normalMin:
normalMin = crossMin
normalPair = crossPair
return normalMin,normalPair
def subClosest(self , p , r):
i = p
min = self.calDistance(p, r)
minPair = (p , r)
while i < r:
j = i + 1
while j <= r:
t = self.calDistance(i,j)
if t < min:
min = t
minPair = (i , j)
j += 1
i += 1
return min,minPair
def calDistance(self , x , y):
a = self.L[x][0] - self.L[y][0]
a = a*a
b = self.L[x][1] - self.L[y][1]
b = b*b
return math.sqrt(a + b)
if __name__ == '__main__':
# L = [(7,5),(5,5),(2,2),(4,1),(100,8),(14,5),(6,7)]
# mPair = Pair(L)
# min,minPair = mPair.getMinPairList(0,len(L)-1)
# print(mPair.L)
# print(min)
# print(minPair)
a = "hello world"
l = a[:5]
print(l)