-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathFGSM.py
32 lines (24 loc) · 1.13 KB
/
FGSM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
import torch
from torch.autograd import Variable
class FGSM:
def __init__(self, model, criterion, epsilon):
self.model = model
self.criterion = criterion
self.epsilon = epsilon
self.device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
assert isinstance(model, torch.nn.Module), "Input parameter model is not nn.Module. Check the model"
assert isinstance(criterion, torch.nn.Module), "Input parameter criterion is no Loss. Check the criterion"
assert (0 <= epsilon <= 1), "episilon must be 0 <= epsilon <= 1"
self.model.eval()
def __call__(self, input, labels):
# For calculating gradient
input_for_gradient = Variable(input, requires_grad=True).to(self.device)
out = self.model(input_for_gradient)
loss = self.criterion(out, Variable(labels))
# Calculate gradient
loss.backward()
# Calculate sign of gradient
signs = torch.sign(input_for_gradient.grad.data)
# Add
input_for_gradient.data = input_for_gradient.data + (self.epsilon * signs)
return input_for_gradient