-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain.py
82 lines (64 loc) · 3.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
from datareader import DBreader_Vimeo90k
from torch.utils.data import DataLoader
import argparse
from torchvision import transforms
import torch
from TestModule import Middlebury_other
import models
from trainer import Trainer
import losses
import datetime
parser = argparse.ArgumentParser(description='AdaCoF-Pytorch')
# parameters
# Model Selection
parser.add_argument('--model', type=str, default='adacofnet')
# Hardware Setting
parser.add_argument('--gpu_id', type=int, default=0)
# Directory Setting
parser.add_argument('--train', type=str, default='./db/vimeo_triplet')
parser.add_argument('--out_dir', type=str, default='./output_adacof_train')
parser.add_argument('--load', type=str, default=None)
parser.add_argument('--test_input', type=str, default='./test_input/middlebury_others/input')
parser.add_argument('--gt', type=str, default='./test_input/middlebury_others/gt')
# Learning Options
parser.add_argument('--epochs', type=int, default=50, help='Max Epochs')
parser.add_argument('--batch_size', type=int, default=4, help='Batch size')
parser.add_argument('--loss', type=str, default='1*Charb+0.01*g_Spatial+0.005*g_Occlusion', help='loss function configuration')
parser.add_argument('--patch_size', type=int, default=256, help='Patch size')
# Optimization specifications
parser.add_argument('--lr', type=float, default=0.001, help='learning rate')
parser.add_argument('--lr_decay', type=int, default=20, help='learning rate decay per N epochs')
parser.add_argument('--decay_type', type=str, default='step', help='learning rate decay type')
parser.add_argument('--gamma', type=float, default=0.5, help='learning rate decay factor for step decay')
parser.add_argument('--optimizer', default='ADAMax', choices=('SGD', 'ADAM', 'RMSprop', 'ADAMax'), help='optimizer to use (SGD | ADAM | RMSprop | ADAMax)')
parser.add_argument('--weight_decay', type=float, default=0, help='weight decay')
# Options for AdaCoF
parser.add_argument('--kernel_size', type=int, default=5)
parser.add_argument('--dilation', type=int, default=1)
transform = transforms.Compose([transforms.ToTensor()])
def main():
args = parser.parse_args()
torch.cuda.set_device(args.gpu_id)
dataset = DBreader_Vimeo90k(args.train, random_crop=(args.patch_size, args.patch_size))
TestDB = Middlebury_other(args.test_input, args.gt)
train_loader = DataLoader(dataset=dataset, batch_size=args.batch_size, shuffle=True, num_workers=0)
model = models.Model(args)
loss = losses.Loss(args)
start_epoch = 0
if args.load is not None:
checkpoint = torch.load(args.load)
model.load(checkpoint['state_dict'])
start_epoch = checkpoint['epoch']
my_trainer = Trainer(args, train_loader, TestDB, model, loss, start_epoch)
now = datetime.datetime.now().strftime('%Y-%m-%d-%H:%M:%S')
with open(args.out_dir + '/config.txt', 'a') as f:
f.write(now + '\n\n')
for arg in vars(args):
f.write('{}: {}\n'.format(arg, getattr(args, arg)))
f.write('\n')
while not my_trainer.terminate():
my_trainer.train()
my_trainer.test()
my_trainer.close()
if __name__ == "__main__":
main()