forked from Alkistis/class_IDE
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththermodynamics.c
4329 lines (3448 loc) · 178 KB
/
thermodynamics.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/** @file thermodynamics.c Documented thermodynamics module
*
* Julien Lesgourgues, 6.09.2010
*
* Deals with the thermodynamical evolution.
* This module has two purposes:
*
* - at the beginning, to initialize the thermodynamics, i.e. to
* integrate the thermodynamical equations, and store all
* thermodynamical quantities as a function of redshift inside an
* interpolation table. The current version of recombination is
* based on RECFAST v1.5. The current version of reionization is
* based on exactly the same reionization function as in CAMB, in
* order to make allow for comparison. It should be easy to
* generalize the module to more complicated reionization histories.
*
* - to provide a routine which allow other modules to evaluate any
* thermodynamical quantities at a given redshift value (by
* interpolating within the interpolation table).
*
*
* The logic is the following:
*
* - in a first step, the code assumes that there is no reionization,
* and computes the ionization fraction, Thomson scattering rate,
* baryon temperature, etc., using RECFAST. The result is stored in
* a temporary table 'recombination_table' (within a temporary
* structure of type 'recombination') for each redshift in a range 0
* < z < z_initial. The sampling in z space is done with a simple
* linear step size.
* - in a second step, the code adds the reionization history,
* starting from a redshift z_reio_start. The ionization fraction at
* this redshift is read in the previous recombination table in
* order to ensure a perfect matching. The code computes the
* ionization fraction, Thomson scattering rate, baryon temperature,
* etc., using a given parametrization of the reionization
* history. The result is stored in a temporary table
* 'reionization_table' (within a temporary structure of type
* 'reionization') for each redshift in the range 0 < z <
* z_reio_start. The sampling in z space is found automatically,
* given the precision parameter 'reionization_sampling'.
*
* - in a third step, the code merges the two tables
* 'recombination_table' and 'reionization_table' inside the table
* 'thermodynamics_table', and the temporary structures
* 'recombination' and 'reionization' are freed. In
* 'thermodynamics_table', the sampling in z space is the one
* defined in the recombination algorithm for z_reio_start < z <
* z_initial, and the one defined in the reionization algorithm for
* 0 < z < z_reio_start.
*
* - at this stage, only a few columns in the table
* 'thermodynamics_table' have been filled. In a fourth step, the
* remaining columns are filled, using some numerical
* integration/derivation routines from the 'array.c' tools module.
*
* - small detail: one of the columns contains the maximum variation
* rate of a few relevant thermodynamical quantities. This rate
* will be used for defining automatically the sampling step size in
* the perturbation module. Hence, the exact value of this rate is
* unimportant, but its order of magnitude at a given z defines the
* sampling precision of the perturbation module. Hence, it is
* harmless to use a smoothing routine in order to make this rate
* look nicer, although this will not affect the final result
* significantly. The last step in the thermodynamics_init module is
* to perform this smoothing.
*
* In summary, the following functions can be called from other modules:
*
* -# thermodynamics_init() at the beginning (but after background_init())
* -# thermodynamics_at_z() at any later time
* -# thermodynamics_free() at the end, when no more calls to thermodynamics_at_z() are needed
*/
#include "thermodynamics.h"
#ifdef HYREC
#include "hyrec.h"
#endif
/**
* Thermodynamics quantities at given redshift z.
*
* Evaluates all thermodynamics quantities at a given value of
* the redshift by reading the pre-computed table and interpolating.
*
* @param pba Input: pointer to background structure
* @param pth Input: pointer to the thermodynamics structure (containing pre-computed table)
* @param z Input: redshift
* @param inter_mode Input: interpolation mode (normal or growing_closeby)
* @param last_index Input/Output: index of the previous/current point in the interpolation array (input only for closeby mode, output for both)
* @param pvecback Input: vector of background quantities (used only in case z>z_initial for getting ddkappa and dddkappa; in that case, should be already allocated and filled, with format short_info or larger; in other cases, will be ignored)
* @param pvecthermo Output: vector of thermodynamics quantities (assumed to be already allocated)
* @return the error status
*/
int thermodynamics_at_z(
struct background * pba,
struct thermo * pth,
double z,
short inter_mode,
int * last_index,
double * pvecback,
double * pvecthermo
) {
/** Summary: */
/** - define local variables */
double x0;
/* - the fact that z is in the pre-computed range 0 <= z <= z_initial
will be checked in the interpolation routines below. Before
trying to interpolate, allow the routine to deal with the case z
> z_intial: then, all relevant quantities can be extrapolated
using simple analytic approximations */
if (z >= pth->z_table[pth->tt_size-1]) {
/* ionization fraction assumed to remain constant at large z */
x0= pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_xe];
pvecthermo[pth->index_th_xe] = x0;
/* Calculate dkappa/dtau (dkappa/dtau = a n_e x_e sigma_T = a^{-2} n_e(today) x_e sigma_T in units of 1/Mpc) */
pvecthermo[pth->index_th_dkappa] = (1.+z) * (1.+z) * pth->n_e * x0 * _sigma_ * _Mpc_over_m_;
/* tau_d scales like (1+z)**2 */
pvecthermo[pth->index_th_tau_d] = pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_tau_d]*pow((1+z)/(1.+pth->z_table[pth->tt_size-1]),2);
if (pth->compute_damping_scale == _TRUE_) {
/* r_d scales like (1+z)**-3/2 */
pvecthermo[pth->index_th_r_d] = pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_r_d]*pow((1+z)/(1.+pth->z_table[pth->tt_size-1]),-1.5);
}
/* Calculate d2kappa/dtau2 = dz/dtau d/dz[dkappa/dtau] given that [dkappa/dtau] proportional to (1+z)^2 and dz/dtau = -H */
pvecthermo[pth->index_th_ddkappa] = -pvecback[pba->index_bg_H] * 2. / (1.+z) * pvecthermo[pth->index_th_dkappa];
/* Calculate d3kappa/dtau3 given that [dkappa/dtau] proportional to (1+z)^2 */
pvecthermo[pth->index_th_dddkappa] = (pvecback[pba->index_bg_H]*pvecback[pba->index_bg_H]/ (1.+z) - pvecback[pba->index_bg_H_prime]) * 2. / (1.+z) * pvecthermo[pth->index_th_dkappa];
/* \f$ exp^{-\kappa}, g, g', g'' \f$ can be set to zero: they are
used only for computing the source functions in the
perturbation module; but source functions only need to be
sampled below z_initial (the condition that
z_start_sources<z_initial is checked in the perturbation
module) */
pvecthermo[pth->index_th_exp_m_kappa] = 0.;
pvecthermo[pth->index_th_g]=0.;
pvecthermo[pth->index_th_dg]=0.;
pvecthermo[pth->index_th_ddg]=0.;
/* Calculate Tb */
pvecthermo[pth->index_th_Tb] = pba->T_cmb*(1.+z);
/* Calculate baryon equation of state parameter wb = (k_B/mu) Tb */
/* note that m_H / mu = 1 + (m_H/m_He-1) Y_p + x_e (1-Y_p) */
pvecthermo[pth->index_th_wb] = _k_B_ / ( _c_ * _c_ * _m_H_ ) * (1. + (1./_not4_ - 1.) * pth->YHe + x0 * (1.-pth->YHe)) * pba->T_cmb * (1.+z);
/* Calculate baryon adiabatic sound speed cb2 = (k_B/mu) Tb (1-1/3 dlnTb/dlna) = (k_B/mu) Tb (1+1/3 (1+z) dlnTb/dz) */
/* note that m_H / mu = 1 + (m_H/m_He-1) Y_p + x_e (1-Y_p) */
pvecthermo[pth->index_th_cb2] = pvecthermo[pth->index_th_wb] * 4. / 3.;
/* derivatives of baryon sound speed (only computed if some non-minimal tight-coupling schemes is requested) */
if (pth->compute_cb2_derivatives == _TRUE_) {
/* since cb2 proportional to (1+z) or 1/a, its derivative wrt conformal time is given by dcb2 = - a H cb2 */
pvecthermo[pth->index_th_dcb2] = - pvecback[pba->index_bg_H] * pvecback[pba->index_bg_a] * pvecthermo[pth->index_th_cb2];
/* then its second derivative is given by ddcb2 = - a H' cb2 */
pvecthermo[pth->index_th_ddcb2] = - pvecback[pba->index_bg_H_prime] * pvecback[pba->index_bg_a] * pvecthermo[pth->index_th_cb2];
}
/* in this regime, variation rate = dkappa/dtau */
pvecthermo[pth->index_th_rate] = pvecthermo[pth->index_th_dkappa];
/* quantities related to DM interacting with DR */
if(pba->has_idm_dr == _TRUE_){
/* calculate dmu_idm_dr and approximate its derivatives as zero */
pvecthermo[pth->index_th_dmu_idm_dr] = pth->a_idm_dr*pow((1.+z)/1.e7,pth->nindex_idm_dr)*pba->Omega0_idm_dr*pow(pba->h,2);
pvecthermo[pth->index_th_ddmu_idm_dr] = -pvecback[pba->index_bg_H] * pth->nindex_idm_dr / (1+z) * pvecthermo[pth->index_th_dmu_idm_dr];
pvecthermo[pth->index_th_dddmu_idm_dr] = (pvecback[pba->index_bg_H]*pvecback[pba->index_bg_H]/ (1.+z) - pvecback[pba->index_bg_H_prime])
* pth->nindex_idm_dr / (1.+z) * pvecthermo[pth->index_th_dmu_idm_dr];
/* calculate dmu_idr (self interaction) */
pvecthermo[pth->index_th_dmu_idr] = pth->b_idr*pow((1.+z)/1.e7,pth->nindex_idm_dr)*pba->Omega0_idr*pow(pba->h,2);
/* extrapolate optical depth of idm_dr and idr */
pvecthermo[pth->index_th_tau_idm_dr] = pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_tau_idm_dr]+
(pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_tau_idm_dr]-pth->thermodynamics_table[(pth->tt_size-2)*pth->th_size+pth->index_th_tau_idm_dr])
*(z-pth->z_table[pth->tt_size-1])/(pth->z_table[pth->tt_size-1]-pth->z_table[pth->tt_size-2]);
pvecthermo[pth->index_th_tau_idr] = pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_tau_idr]+
(pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_tau_idr]-pth->thermodynamics_table[(pth->tt_size-2)*pth->th_size+pth->index_th_tau_idr])
*(z-pth->z_table[pth->tt_size-1])/(pth->z_table[pth->tt_size-1]-pth->z_table[pth->tt_size-2]);
/* extrapolate idm_dr visibility function */
pvecthermo[pth->index_th_g_idm_dr] = pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_g_idm_dr];
/* calculate interacting dark matter sound speed */
pvecthermo[pth->index_th_cidm_dr2] = 4*_k_B_*pba->T_idr*(1.+z)/_eV_/3./pth->m_idm;
/* calculate interacting dark matter temperature (equal to idr temperature at this redhsift) */
pvecthermo[pth->index_th_Tidm_dr] = pba->T_idr*(1.+z);
}
}
/** - interpolate in table with array_interpolate_spline() (normal
mode) or array_interpolate_spline_growing_closeby() (closeby
mode) */
else {
/* some very specific cases require linear interpolation because of a break in the derivative of the functions */
if (((pth->reio_parametrization == reio_half_tanh) && (z < 2*pth->z_reio))
|| ((pth->reio_parametrization == reio_inter) && (z < 50.))) {
class_call(array_interpolate_linear(
pth->z_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
z,
last_index,
pvecthermo,
pth->th_size,
pth->error_message),
pth->error_message,
pth->error_message);
}
/* in the "normal" case, use spline interpolation */
else {
if (inter_mode == pth->inter_normal) {
class_call(array_interpolate_spline(
pth->z_table,
pth->tt_size,
pth->thermodynamics_table,
pth->d2thermodynamics_dz2_table,
pth->th_size,
z,
last_index,
pvecthermo,
pth->th_size,
pth->error_message),
pth->error_message,
pth->error_message);
}
if (inter_mode == pth->inter_closeby) {
class_call(array_interpolate_spline_growing_closeby(
pth->z_table,
pth->tt_size,
pth->thermodynamics_table,
pth->d2thermodynamics_dz2_table,
pth->th_size,
z,
last_index,
pvecthermo,
pth->th_size,
pth->error_message),
pth->error_message,
pth->error_message);
}
}
}
return _SUCCESS_;
}
/**
* Initialize the thermo structure, and in particular the
* thermodynamics interpolation table.
*
* @param ppr Input: pointer to precision structure
* @param pba Input: pointer to background structure
* @param pth Input/Output: pointer to initialized thermo structure
* @return the error status
*/
int thermodynamics_init(
struct precision * ppr,
struct background * pba,
struct thermo * pth
) {
/** Summary: */
/** - define local variables */
/* index running over time*/
int index_tau;
/* temporary variables related to visibility function */
double g;
/* vector of background values for calling background_at_tau() */
double * pvecback;
/* index for calling background_at_tau() */
int last_index_back;
/* temporary table of values of tau associated with z values in pth->z_table */
double * tau_table;
/* same ordered in growing time rather than growing redshift */
double * tau_table_growing;
/* conformal time of reionization */
double tau_reio;
/* R = (3./4.)*(rho_b/rho_g) */
double R;
/* structures for storing temporarily information on recombination
and reionization */
struct recombination reco;
struct reionization reio;
struct recombination * preco;
struct reionization * preio;
double tau,tau_ini;
double g_max;
int index_tau_max;
double dkappa_ini;
double z_idm_dr, z_idr, tau_idm_dr, tau_idr, Gamma_heat_idm_dr, dTdz_idm_dr, T_idm_dr, z, T_idr, dz, T_adia, z_adia;
double tau_idm_dr_fs=0.;
int index_tau_fs;
int n, N_sub_steps;
double dz_sub_step;
if (pth->thermodynamics_verbose > 0)
printf("Computing thermodynamics");
/** - compute and check primordial Helium fraction */
/* Y_He */
if (pth->YHe == _BBN_) {
class_call(thermodynamics_helium_from_bbn(ppr,pba,pth),
pth->error_message,
pth->error_message);
if (pth->thermodynamics_verbose > 0)
printf(" with Y_He=%.4f\n",pth->YHe);
}
else {
if (pth->thermodynamics_verbose > 0)
printf("\n");
}
class_test((pth->YHe < _YHE_SMALL_)||(pth->YHe > _YHE_BIG_),
pth->error_message,
"Y_He=%g out of bounds (%g<Y_He<%g)",pth->YHe,_YHE_SMALL_,_YHE_BIG_);
/** - check energy injection parameters */
class_test((pth->annihilation<0),
pth->error_message,
"annihilation parameter cannot be negative");
class_test((pth->annihilation>1.e-4),
pth->error_message,
"annihilation parameter suspiciously large (%e, while typical bounds are in the range of 1e-7 to 1e-6)",
pth->annihilation);
class_test((pth->annihilation_variation>0),
pth->error_message,
"annihilation variation parameter must be negative (decreasing annihilation rate)");
class_test((pth->annihilation_z<0),
pth->error_message,
"characteristic annihilation redshift cannot be negative");
class_test((pth->annihilation_zmin<0),
pth->error_message,
"characteristic annihilation redshift cannot be negative");
class_test((pth->annihilation_zmax<0),
pth->error_message,
"characteristic annihilation redshift cannot be negative");
class_test((pth->annihilation>0) && ((pba->has_cdm==_FALSE_)&&(pba->has_idm_dr==_FALSE_)),
pth->error_message,
"CDM annihilation effects require the presence of CDM or IDM!");
class_test((pth->annihilation_f_halo>0) && (pth->recombination==recfast),
pth->error_message,
"Switching on DM annihilation in halos requires using HyRec instead of RECFAST. Otherwise some values go beyond their range of validity in the RECFAST fits, and the thermodynamics module fails. Two solutions: add 'recombination = HyRec' to your input, or set 'annihilation_f_halo = 0.' (default).");
class_test((pth->annihilation_f_halo<0),
pth->error_message,
"Parameter for DM annihilation in halos cannot be negative");
class_test((pth->annihilation_z_halo<0),
pth->error_message,
"Parameter for DM annihilation in halos cannot be negative");
if (pth->thermodynamics_verbose > 0)
if ((pth->annihilation >0) && (pth->reio_parametrization == reio_none) && (ppr->recfast_Heswitch >= 3) && (pth->recombination==recfast))
printf("Warning: if you have DM annihilation and you use recfast with option recfast_Heswitch >= 3, then the expression for CfHe_t and dy[1] becomes undefined at late times, producing nan's. This is however masked by reionization if you are not in reio_none mode.");
class_test((pth->decay<0),
pth->error_message,
"decay parameter cannot be negative");
class_test((pth->decay>0)&&((pba->has_cdm==_FALSE_)&&(pba->has_idm_dr==_FALSE_)),
pth->error_message,
"CDM decay effects require the presence of CDM or IDM!");
/* tests in order to prevent segmentation fault in the following */
class_test(_not4_ == 0.,
pth->error_message,
"stop to avoid division by zero");
class_test(pth->YHe == 1.,
pth->error_message,
"stop to avoid division by zero");
/** - initialize pointers */
preco=&reco;
preio=&reio;
/** - assign values to all indices in the structures with thermodynamics_indices()*/
class_call(thermodynamics_indices(pba,pth,preco,preio),
pth->error_message,
pth->error_message);
/** - allocate background vector */
class_alloc(pvecback,pba->bg_size*sizeof(double),pba->error_message);
/** - solve recombination and store values of \f$ z, x_e, d \kappa / d \tau, T_b, c_b^2 \f$ with thermodynamics_recombination() */
class_call_except(thermodynamics_recombination(ppr,pba,pth,preco,pvecback),
pth->error_message,
pth->error_message,
free(pvecback));
/** - if there is reionization, solve reionization and store values of \f$ z, x_e, d \kappa / d \tau, T_b, c_b^2 \f$ with thermodynamics_reionization()*/
if (pth->reio_parametrization != reio_none) {
class_call_except(thermodynamics_reionization(ppr,pba,pth,preco,preio,pvecback),
pth->error_message,
pth->error_message,
free(preco->recombination_table);free(pvecback));
}
else {
preio->rt_size=0;
preio->index_reco_when_reio_start=-1;
}
/** - merge tables in recombination and reionization structures into
a single table in thermo structure */
class_call(thermodynamics_merge_reco_and_reio(ppr,pba,pth,preco,preio),
pth->error_message,
pth->error_message);
/** - compute table of corresponding conformal times */
class_alloc(tau_table,pth->tt_size*sizeof(double),pth->error_message);
for (index_tau=0; index_tau < pth->tt_size; index_tau++) {
class_call(background_tau_of_z(pba,
pth->z_table[index_tau],
tau_table+index_tau),
pba->error_message,
pth->error_message);
}
/** - store initial value of conformal time in the structure */
pth->tau_ini = tau_table[pth->tt_size-1];
/** - fill missing columns (quantities not computed previously but related) */
/** - --> minus the baryon drag interaction rate, -dkappa_d/dtau = -[1/R * kappa'], with R = 3 rho_b / 4 rho_gamma, stored temporarily in column ddkappa */
last_index_back = pba->bg_size-1;
for (index_tau=0; index_tau < pth->tt_size; index_tau++) {
class_call(background_at_tau(pba,
tau_table[index_tau],
pba->normal_info,
pba->inter_closeby,
&last_index_back,
pvecback),
pba->error_message,
pth->error_message);
R = 3./4.*pvecback[pba->index_bg_rho_b]/pvecback[pba->index_bg_rho_g];
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_ddkappa] =
-1./R*pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa];
if(pba->has_idm_dr == _TRUE_) {
/* - --> idr interaction rate with idm_dr (i.e. idr opacity to idm_dr scattering) */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dmu_idm_dr] =
pth->a_idm_dr*pow((1.+pth->z_table[index_tau])/1.e7,pth->nindex_idm_dr)*pba->Omega0_idm_dr*pow(pba->h,2);
/* - --> idm_dr interaction rate with idr (i.e. idm_dr opacity
to idr scattering), [Sinv*dmu_idm_dr] with Sinv = (4
rho_idr) / (3 rho_idm_dr), stored temporarily in
ddmu_idm_dr */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_ddmu_idm_dr] =
4./3.*pvecback[pba->index_bg_rho_idr]/pvecback[pba->index_bg_rho_idm_dr]
*pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dmu_idm_dr];
/* - --> idr self-interaction rate */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dmu_idr] =
pth->b_idr*pow((1.+pth->z_table[index_tau])/1.e7,pth->nindex_idm_dr)*pba->Omega0_idr*pow(pba->h,2);
}
}
/** - --> second derivative of this rate, -[1/R * kappa']'', stored temporarily in column dddkappa */
class_call(array_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_ddkappa,
pth->index_th_dddkappa,
_SPLINE_EST_DERIV_,
pth->error_message),
pth->error_message,
pth->error_message);
/** - --> compute tau_d = [int_{tau_today}^{tau} dtau -dkappa_d/dtau] */
class_call(array_integrate_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_ddkappa,
pth->index_th_dddkappa,
pth->index_th_tau_d,
pth->error_message),
pth->error_message,
pth->error_message);
/* the temporary quantities stored in columns ddkappa and dddkappa
will not be used anymore, so they can be overwritten by other
intermediate steps of other computations */
if(pba->has_idm_dr == _TRUE_){
/** --> second derivative of idm_dr interaction rate (with idr), [Sinv*dmu_idm_dr]'', stored temporarily in column dddmu */
class_call(array_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_ddmu_idm_dr,
pth->index_th_dddmu_idm_dr,
_SPLINE_EST_DERIV_,
pth->error_message),
pth->error_message,
pth->error_message);
/** - --> compute optical depth of idm, tau_idm_dr = [int_{tau_today}^{tau} dtau [Sinv*dmu_idm_dr] ].
This step gives -tau_idm_dr. The resulty is mutiplied by -1 later on. */
class_call(array_integrate_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_ddmu_idm_dr,
pth->index_th_dddmu_idm_dr,
pth->index_th_tau_idm_dr,
pth->error_message),
pth->error_message,
pth->error_message);
/** - --> second derivative of idr interaction rate (with idm_dr), [dmu_idm_idr]'', stored temporarily in column dddmu */
class_call(array_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_dmu_idm_dr,
pth->index_th_dddmu_idm_dr,
_SPLINE_EST_DERIV_,
pth->error_message),
pth->error_message,
pth->error_message);
/** - --> compute optical depth of idr, tau_idr = [int_{tau_today}^{tau} dtau [dmu_idm_idr] ].
This step gives -tau_idr. The resulty is mutiplied by -1 later on. */
class_call(array_integrate_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_dmu_idm_dr,
pth->index_th_dddmu_idm_dr,
pth->index_th_tau_idr,
pth->error_message),
pth->error_message,
pth->error_message);
}
/** - --> compute damping scale:
r_d = 2pi/k_d = 2pi * [int_{tau_ini}^{tau} dtau (1/kappa') 1/6 (R^2+16/15(1+R))/(1+R)^2]^1/2
= 2pi * [int_{tau_ini}^{tau} dtau (1/kappa') 1/6 (R^2/(1+R)+16/15)/(1+R)]^1/2
which is like in CosmoTherm (CT), but slightly
different from Wayne Hu (WH)'s thesis eq. (5.59):
the factor 16/15 in CT is 4/5 in WH */
if (pth->compute_damping_scale == _TRUE_) {
class_alloc(tau_table_growing,pth->tt_size*sizeof(double),pth->error_message);
/* compute integrand and store temporarily in column "ddkappa" */
for (index_tau=0; index_tau < pth->tt_size; index_tau++) {
tau_table_growing[index_tau]=tau_table[pth->tt_size-1-index_tau];
class_call(background_at_tau(pba,
tau_table_growing[index_tau],
pba->normal_info,
pba->inter_closeby,
&last_index_back,
pvecback),
pba->error_message,
pth->error_message);
R = 3./4.*pvecback[pba->index_bg_rho_b]/pvecback[pba->index_bg_rho_g];
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_ddkappa] =
1./6./pth->thermodynamics_table[(pth->tt_size-1-index_tau)*pth->th_size+pth->index_th_dkappa]
*(R*R/(1+R)+16./15.)/(1.+R);
}
/* compute second derivative of integrand, and store temporarily in column "dddkappa" */
class_call(array_spline_table_line_to_line(tau_table_growing,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_ddkappa,
pth->index_th_dddkappa,
_SPLINE_EST_DERIV_,
pth->error_message),
pth->error_message,
pth->error_message);
/* compute integral and store temporarily in column "g" */
class_call(array_integrate_spline_table_line_to_line(tau_table_growing,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_ddkappa,
pth->index_th_dddkappa,
pth->index_th_g,
pth->error_message),
pth->error_message,
pth->error_message);
free(tau_table_growing);
/* we could now write the result as r_d = 2pi * sqrt(integral),
but we will first better acount for the contribution frokm the tau_ini boundary.
Close to this boundary, R=0 and the integrand is just 16/(15*6)/kappa'
Using kappa' propto 1/a^2 and tau propro a during RD, we get the analytic result:
int_0^{tau_ini} dtau / kappa' = tau_ini / 3 / kappa'_ini
Thus r_d = 2pi * sqrt( 16/(15*6*3) * (tau_ini/ kappa'_ini) * integral) */
tau_ini = tau_table[pth->tt_size-1];
dkappa_ini = pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_dkappa];
for (index_tau=0; index_tau < pth->tt_size; index_tau++) {
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_r_d] =
2.*_PI_*sqrt(16./(15.*6.*3.)*tau_ini/dkappa_ini
+pth->thermodynamics_table[(pth->tt_size-1-index_tau)*pth->th_size+pth->index_th_g]);
}
} // end of damping scale calculation
/** - --> second derivative with respect to tau of dkappa (in view of spline interpolation) */
class_call(array_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_dkappa,
pth->index_th_dddkappa,
_SPLINE_EST_DERIV_,
pth->error_message),
pth->error_message,
pth->error_message);
/** - --> first derivative with respect to tau of dkappa (using spline interpolation) */
class_call(array_derive_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_dkappa,
pth->index_th_dddkappa,
pth->index_th_ddkappa,
pth->error_message),
pth->error_message,
pth->error_message);
/** - --> compute -kappa = [int_{tau_today}^{tau} dtau dkappa/dtau], store temporarily in column "g" */
class_call(array_integrate_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_dkappa,
pth->index_th_dddkappa,
pth->index_th_g,
pth->error_message),
pth->error_message,
pth->error_message);
/** - --> derivatives of baryon sound speed (only computed if some non-minimal tight-coupling schemes is requested) */
if (pth->compute_cb2_derivatives == _TRUE_) {
/** - ---> second derivative with respect to tau of cb2 */
class_call(array_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_cb2,
pth->index_th_ddcb2,
_SPLINE_EST_DERIV_,
pth->error_message),
pth->error_message,
pth->error_message);
/** - ---> first derivative with respect to tau of cb2 (using spline interpolation) */
class_call(array_derive_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_cb2,
pth->index_th_ddcb2,
pth->index_th_dcb2,
pth->error_message),
pth->error_message,
pth->error_message);
}
/** - --> compute visibility: \f$ g= (d \kappa/d \tau) e^{- \kappa} \f$ */
/* loop on z (decreasing z, increasing time) */
for (index_tau=pth->tt_size-1; index_tau>=0; index_tau--) {
/** - ---> compute g */
g = pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa] *
exp(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_g]);
/** - ---> compute exp(-kappa) */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_exp_m_kappa] =
exp(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_g]);
/** - ---> compute g' (the plus sign of the second term is correct, see def of -kappa in thermodynamics module!) */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dg] =
(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_ddkappa] +
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa] *
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa]) *
exp(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_g]);
/** - ---> compute g'' */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_ddg] =
(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dddkappa] +
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa] *
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_ddkappa] * 3. +
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa] *
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa] *
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa]) *
exp(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_g]);
/** - ---> store g */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_g] = g;
/** - ---> compute variation rate */
class_test(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa] == 0.,
pth->error_message,
"variation rate diverges");
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_rate] =
sqrt(pow(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa],2)
+pow(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_ddkappa]/
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa],2)
+fabs(pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dddkappa]/
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_dkappa]));
/* - ---> restore correct sign for idm_dr and idr optical depth, and calculate idm_dr visibility function */
if(pba->has_idm_dr == _TRUE_){
/* restore the correct sign for tau_idm_dr */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_tau_idm_dr] *= -1.;
/* restore the correct sign for tau_idr */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_tau_idr] *= -1.;
/* visibility function for idm_dr : g_idm_dr = [Sinv*dmu_idm_dr] * exp(-tau_idm_dr) */
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_g_idm_dr] =
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_ddmu_idm_dr]
* exp(-pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_tau_idm_dr]);
}
}
/** - smooth the rate (details of smoothing unimportant: only the
order of magnitude of the rate matters) */
class_call(array_smooth(pth->thermodynamics_table,
pth->th_size,
pth->tt_size,
pth->index_th_rate,
ppr->thermo_rate_smoothing_radius,
pth->error_message),
pth->error_message,
pth->error_message);
/* - ---> fill columns for ddmu_idm_dr and dddmu_idm_dr with true values, and compute idm_dr temperature and sound speed */
if(pba->has_idm_dr == _TRUE_){
/** - --> second derivative with respect to tau of dmu_idm_dr (in view of spline interpolation) */
class_call(array_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_dmu_idm_dr,
pth->index_th_dddmu_idm_dr,
_SPLINE_EST_DERIV_,
pth->error_message),
pth->error_message,
pth->error_message);
/** - --> first derivative with respect to tau of dmu_idm_dr (using spline interpolation) */
class_call(array_derive_spline_table_line_to_line(tau_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->index_th_dmu_idm_dr,
pth->index_th_dddmu_idm_dr,
pth->index_th_ddmu_idm_dr,
pth->error_message),
pth->error_message,
pth->error_message);
/** - --> now compute idm_dr temperature and sound speed in various regimes */
/* (A) - initial value of T_idm_dr at the maximum z (minimum tau) */
z = pth->z_table[pth->tt_size-1];
class_call(background_tau_of_z(pba,z,&(tau)),
pba->error_message,
pth->error_message);
class_call(background_at_tau(pba,tau, pba->short_info, pba->inter_normal, &last_index_back, pvecback),
pba->error_message,
pth->error_message);
Gamma_heat_idm_dr = 2.*pba->Omega0_idr*pow(pba->h,2)*pth->a_idm_dr*pow((1.+z),(pth->nindex_idm_dr+1.))/pow(1.e7,pth->nindex_idm_dr);
/* (A1) --> if Gamma is not much smaller than H, set T_idm_dr to T_idm_dr = T_idr = xi*T_gamma (tight coupling solution) */
if(Gamma_heat_idm_dr > 1.e-3 * pvecback[pba->index_bg_a]*pvecback[pba->index_bg_H]){
T_idm_dr = pba->T_idr*(1.+z);
dTdz_idm_dr = pba->T_idr;
}
/* (A2) --> otherwise, if Gamma << H, set initial T_idm_dr to the
approximate analytic solution (Gamma/aH)/(1+(Gamma/aH)*T_idr)
(eq. (A62) in ETHOS I ) */
else {
T_idr = pba->T_idr*(1.+z);
T_idm_dr = Gamma_heat_idm_dr/(pvecback[pba->index_bg_a]*pvecback[pba->index_bg_H])
/(1. + Gamma_heat_idm_dr/(pvecback[pba->index_bg_a]*pvecback[pba->index_bg_H]))*T_idr;
dTdz_idm_dr = 2.*T_idm_dr - Gamma_heat_idm_dr/pvecback[pba->index_bg_H] * (T_idr - T_idm_dr);
}
pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_Tidm_dr] = T_idm_dr;
pth->thermodynamics_table[(pth->tt_size-1)*pth->th_size+pth->index_th_cidm_dr2] = _k_B_*T_idm_dr/_eV_/pth->m_idm*(1.+dTdz_idm_dr/3./T_idm_dr);
/* T_adia and z_adia will be used later. They are defined as "the
last T_idm_dr(z) at which the temperature was evaluated
explicitely, rather than scaled like a^{-2} (decoupled DM
regime)". Here we just initialize them. They will be updated
each time that we recompte T_idm_dr explicitely. */
T_adia = T_idm_dr;
z_adia = z;
/* (B) - iterate over growing tau / decreasing z to find other
values. At each new z we need to compute the following
quantities: T_idr, T_idm_dr, Gamma_heat_idm_dr, a, H, dT_idm_dr,/dz,
c_s_idm_dr^2. They all needed to be known from step to step, even
if the final goal is only to store T_idm_dr, c_s_idm^2 */
for (index_tau=pth->tt_size-2; index_tau>=0; index_tau--) {
/* (B1) --> tight-coupling solution: Gamma >> H implies T_idm_dr=T_idr=xi*T_gamma */
if(Gamma_heat_idm_dr > 1.e3 * pvecback[pba->index_bg_a]*pvecback[pba->index_bg_H]){
z = pth->z_table[index_tau];
T_idr = pba->T_idr*(1.+z);
T_idm_dr = T_idr;
Gamma_heat_idm_dr = 2.*pba->Omega0_idr*pow(pba->h,2)*pth->a_idm_dr*pow((1.+z),(pth->nindex_idm_dr+1.))/pow(1.e7,pth->nindex_idm_dr);
class_call(background_tau_of_z(pba,z,&(tau)),
pba->error_message,
pth->error_message);
class_call(background_at_tau(pba,tau, pba->short_info, pba->inter_normal, &last_index_back, pvecback),
pba->error_message,
pth->error_message);
dTdz_idm_dr =pba->T_idr;
}
/* (B2) --> intermediate solution: integrate differential equation equation dT_idm_dr/dz = 2 a T_DM - Gamma/H (T_idr - T_idm_dr) */
else if (Gamma_heat_idm_dr > 1.e-3 * pvecback[pba->index_bg_a]*pvecback[pba->index_bg_H]) {
dz = pth->z_table[index_tau+1] - pth->z_table[index_tau];
/* (B2a) ----> if dz << H/Gamma the equation is not too stiff and the traditional forward Euler method converges */
if (dz < pvecback[pba->index_bg_H]/Gamma_heat_idm_dr/10.) {
z = pth->z_table[index_tau];
T_idr = pba->T_idr*(1.+z);
T_idm_dr -= dTdz_idm_dr*dz;
Gamma_heat_idm_dr = 2.*pba->Omega0_idr*pow(pba->h,2)*pth->a_idm_dr*pow((1.+z),(pth->nindex_idm_dr+1.))/pow(1.e7,pth->nindex_idm_dr);
class_call(background_tau_of_z(pba,z,&(tau)),
pba->error_message,
pth->error_message);
class_call(background_at_tau(pba,tau, pba->short_info, pba->inter_normal, &last_index_back, pvecback),
pba->error_message,
pth->error_message);
dTdz_idm_dr = 2.*pvecback[pba->index_bg_a]*T_idm_dr-Gamma_heat_idm_dr/(pvecback[pba->index_bg_H])*(T_idr-T_idm_dr);
}
/* (B2b) ----> otherwise, the equation is too stiff and the
traditional forward Euler method diverges with this
stepsize. But we can just decreasee dz to bring it back
well within the convergence radius H/Gamma of the
equation. */
else {
N_sub_steps = (int)(dz/ (pvecback[pba->index_bg_H]/Gamma_heat_idm_dr/10.))+1;
dz_sub_step = dz/N_sub_steps;
/* loop over sub-steps */
for (n=0; n<N_sub_steps; n++) {
/* evolve quantities over sub-step wioth forward Euler method */
z -= dz_sub_step;
/* final redshift last sub-step overwritten to avoid small rounding error */
if (n==(N_sub_steps-1)) z=pth->z_table[index_tau];
T_idr = pba->T_idr*(1.+z);
T_idm_dr -= dTdz_idm_dr*dz_sub_step;
Gamma_heat_idm_dr = 2.*pba->Omega0_idr*pow(pba->h,2)*pth->a_idm_dr*pow((1.+z),(pth->nindex_idm_dr+1.))/pow(1.e7,pth->nindex_idm_dr);
class_call(background_tau_of_z(pba,z,&(tau)),
pba->error_message,
pth->error_message);
class_call(background_at_tau(pba,tau, pba->short_info, pba->inter_normal, &last_index_back, pvecback),
pba->error_message,
pth->error_message);
dTdz_idm_dr = 2.*pvecback[pba->index_bg_a]*T_idm_dr-Gamma_heat_idm_dr/(pvecback[pba->index_bg_H])*(T_idr-T_idm_dr);
}
}
/* update T_adia, z_adia */
T_adia = T_idm_dr;
z_adia = z;
}
/* (B3) --> decoupled solution: T_idm_dr scales like a^-2 */
else {
z = pth->z_table[index_tau];
T_idr = pba->T_idr*(1.+z);
T_idm_dr = T_adia * pow((1.+z)/(1.+z_adia),2);
Gamma_heat_idm_dr = 2.*pba->Omega0_idr*pow(pba->h,2)*pth->a_idm_dr*pow((1.+z),(pth->nindex_idm_dr+1.))/pow(1.e7,pth->nindex_idm_dr);
class_call(background_tau_of_z(pba,z,&(tau)),
pba->error_message,
pth->error_message);
class_call(background_at_tau(pba,tau, pba->short_info, pba->inter_normal, &last_index_back, pvecback),
pba->error_message,
pth->error_message);
dTdz_idm_dr = 2./(1+z)*T_idm_dr;
}
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_Tidm_dr] = T_idm_dr;
pth->thermodynamics_table[index_tau*pth->th_size+pth->index_th_cidm_dr2] = _k_B_*T_idm_dr/_eV_/pth->m_idm*(1.+dTdz_idm_dr/3./T_idm_dr);
}
}
free(tau_table);
/** - fill tables of second derivatives with respect to z (in view of spline interpolation) */
class_call(array_spline_table_lines(pth->z_table,
pth->tt_size,
pth->thermodynamics_table,
pth->th_size,
pth->d2thermodynamics_dz2_table,
_SPLINE_EST_DERIV_,
pth->error_message),
pth->error_message,
pth->error_message);
/** - find maximum of g */