-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
119 lines (100 loc) · 3.9 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from typing import Dict, Any, List, Optional
import torch
import json
import os
from dotenv import load_dotenv
import traceback
# Load environment variables
load_dotenv()
# Use a smaller, less resource-intensive model
MODEL_NAME = "microsoft/phi-1_5"
# Keep loaded models in memory
LOADED_MODELS = {}
def initialize_models():
"""Initialize and load the model at startup"""
try:
print(f"Loading model {MODEL_NAME}...")
# Load with token from environment
token = os.getenv("HUGGINGFACE_TOKEN")
tokenizer = AutoTokenizer.from_pretrained(
MODEL_NAME,
token=token,
trust_remote_code=True
)
print(f"Tokenizer loaded: {type(tokenizer)}") # Debug print
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
token=token,
trust_remote_code=True
)
print(f"Model loaded: {type(model)}") # Debug print
LOADED_MODELS["default"] = { # Use a generic key like "default"
"model": model,
"tokenizer": tokenizer,
"pipeline": pipeline(
"text-generation",
model=model,
tokenizer=tokenizer
)
}
except Exception as e:
print(f"Error loading model {MODEL_NAME}:")
traceback.print_exc() # Print the full stack trace
# Removed: st.error(f"Failed to load model {MODEL_NAME}. Please check configuration and HUGGINGFACE_TOKEN.")
def evaluate_prompt_effectiveness(prompt: str, criteria: List[str] = None) -> Dict[str, Any]:
"""
Evaluate a prompt's potential effectiveness
Args:
prompt: The prompt to evaluate
criteria: Specific criteria to evaluate (clarity, specificity, etc.)
Returns:
Dictionary with scores and suggestions
"""
if criteria is None:
criteria = ["clarity", "specificity", "context", "constraints"]
# Initialize scores
scores = {criterion: 0 for criterion in criteria}
suggestions = []
# Evaluate clarity
if "clarity" in criteria:
# Check sentence structure
sentences = prompt.split(".")
avg_sentence_length = sum(len(s.split()) for s in sentences) / len(sentences)
if avg_sentence_length > 25:
scores["clarity"] = 0.5
suggestions.append("Consider using shorter sentences for clarity.")
else:
scores["clarity"] = 0.9
# Evaluate specificity
if "specificity" in criteria:
# Look for specific instructions
if any(word in prompt.lower() for word in ["specific", "exactly", "precisely"]):
scores["specificity"] = 0.9
else:
scores["specificity"] = 0.6
suggestions.append("Add more specific instructions or examples.")
# Evaluate context
if "context" in criteria:
# Check if context is provided
if "context" in prompt.lower() or len(prompt.split()) > 30:
scores["context"] = 0.8
else:
scores["context"] = 0.4
suggestions.append("Add more context for better results.")
# Evaluate constraints
if "constraints" in criteria:
# Check if constraints or limitations are specified
constraint_words = ["limit", "constraint", "must", "should", "only", "don't"]
if any(word in prompt.lower() for word in constraint_words):
scores["constraints"] = 0.8
else:
scores["constraints"] = 0.5
suggestions.append("Consider adding constraints or limitations.")
# Calculate overall score
overall_score = sum(scores.values()) / len(scores)
return {
"scores": scores,
"overall_score": overall_score,
"suggestions": suggestions
}