|
| 1 | +import unittest |
| 2 | + |
| 3 | +import torch |
| 4 | +import torch.nn.functional as F |
| 5 | +from torch.utils.data import DataLoader, TensorDataset |
| 6 | + |
| 7 | +import pytorch_lightning as pl |
| 8 | +from pytorch_lightning.metrics.functional import to_onehot |
| 9 | + |
| 10 | + |
| 11 | +class LitDataModule(pl.LightningDataModule): |
| 12 | + |
| 13 | + def __init__(self, batch_size=16): |
| 14 | + super().__init__() |
| 15 | + |
| 16 | + self.batch_size = batch_size |
| 17 | + |
| 18 | + def setup(self, stage=None): |
| 19 | + X_train = torch.rand(100, 1, 28, 28).float() |
| 20 | + y_train = to_onehot(torch.randint(0, 10, size=(100,)), num_classes=10).float() |
| 21 | + X_valid = torch.rand(20, 1, 28, 28) |
| 22 | + y_valid = to_onehot(torch.randint(0, 10, size=(20,)), num_classes=10).float() |
| 23 | + |
| 24 | + self.train_ds = TensorDataset(X_train, y_train) |
| 25 | + self.valid_ds = TensorDataset(X_valid, y_valid) |
| 26 | + |
| 27 | + def train_dataloader(self): |
| 28 | + return DataLoader(self.train_ds, batch_size=self.batch_size, shuffle=True) |
| 29 | + |
| 30 | + def val_dataloader(self): |
| 31 | + return DataLoader(self.valid_ds, batch_size=self.batch_size, shuffle=False) |
| 32 | + |
| 33 | + |
| 34 | +class LitClassifier(pl.LightningModule): |
| 35 | + |
| 36 | + def __init__(self): |
| 37 | + super().__init__() |
| 38 | + self.l1 = torch.nn.Linear(28 * 28, 10) |
| 39 | + |
| 40 | + def forward(self, x): |
| 41 | + return torch.relu(self.l1(x.view(x.size(0), -1))) |
| 42 | + |
| 43 | + def training_step(self, batch, batch_idx): |
| 44 | + x, y = batch |
| 45 | + y_hat = self(x) |
| 46 | + loss = F.binary_cross_entropy_with_logits(y_hat, y) |
| 47 | + result = pl.TrainResult(loss) |
| 48 | + result.log('train_loss', loss, on_epoch=True) |
| 49 | + return result |
| 50 | + |
| 51 | + def validation_step(self, batch, batch_idx): |
| 52 | + x, y = batch |
| 53 | + y_hat = self(x) |
| 54 | + loss = F.binary_cross_entropy_with_logits(y_hat, y) |
| 55 | + result = pl.EvalResult(checkpoint_on=loss) |
| 56 | + result.log('val_loss', loss) |
| 57 | + return result |
| 58 | + |
| 59 | + def configure_optimizers(self): |
| 60 | + return torch.optim.Adam(self.parameters(), lr=0.02) |
| 61 | + |
| 62 | + |
| 63 | +class TestPytorchLightning(unittest.TestCase): |
| 64 | + |
| 65 | + def test_version(self): |
| 66 | + self.assertIsNotNone(pl.__version__) |
| 67 | + |
| 68 | + def test_mnist(self): |
| 69 | + dm = LitDataModule() |
| 70 | + model = LitClassifier() |
| 71 | + trainer = pl.Trainer(gpus=None, max_epochs=1) |
| 72 | + result = trainer.fit(model, datamodule=dm) |
| 73 | + self.assertTrue(result) |
0 commit comments