-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathutils.py
453 lines (376 loc) · 15.2 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
import os
import functools
import yaml
import numpy as np
import math
import torch
import shutil
import torchvision.transforms as transforms
from torch.autograd import Variable
from collections import namedtuple
class MyDumper(yaml.Dumper):
def increase_indent(self, flow=False, indentless=False):
return super(MyDumper, self).increase_indent(flow, False)
Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat')
PRIMITIVES = [
'none',
'noise',
'max_pool_3x3',
'avg_pool_3x3',
'skip_connect',
'sep_conv_3x3',
'sep_conv_5x5',
'dil_conv_3x3',
'dil_conv_5x5'
]
def singleton(cls, *args, **kw):
instances = dict()
@functools.wraps(cls)
def _fun(*clsargs, **clskw):
if cls not in instances:
instances[cls] = cls(*clsargs, **clskw)
return instances[cls]
_fun.cls = cls # make sure cls can be obtained
return _fun
class EVLocalAvg(object):
def __init__(self, window=5, ev_freq=2, total_epochs=50):
""" Keep track of the eigenvalues local average.
Args:
window (int): number of elements used to compute local average.
Default: 5
ev_freq (int): frequency used to compute eigenvalues. Default:
every 2 epochs
total_epochs (int): total number of epochs that DARTS runs.
Default: 50
"""
self.window = window
self.ev_freq = ev_freq
self.epochs = total_epochs
self.stop_search = False
self.stop_epoch = total_epochs - 1
self.stop_genotype = None
self.ev = []
self.ev_local_avg = []
self.genotypes = {}
self.la_epochs = {}
# start and end index of the local average window
self.la_start_idx = 0
self.la_end_idx = self.window
def reset(self):
self.ev = []
self.ev_local_avg = []
self.genotypes = {}
self.la_epochs = {}
def update(self, epoch, ev, genotype):
""" Method to update the local average list.
Args:
epoch (int): current epoch
ev (float): current dominant eigenvalue
genotype (namedtuple): current genotype
"""
self.ev.append(ev)
self.genotypes.update({epoch: genotype})
# set the stop_genotype to the current genotype in case the early stop
# procedure decides not to early stop
self.stop_genotype = genotype
# since the local average computation starts after the dominant
# eigenvalue in the first epoch is already computed we have to wait
# at least until we have 3 eigenvalues in the list.
if (len(self.ev) >= int(np.ceil(self.window/2))) and (epoch <
self.epochs - 1):
# start sliding the window as soon as the number of eigenvalues in
# the list becomes equal to the window size
if len(self.ev) < self.window:
self.ev_local_avg.append(np.mean(self.ev))
else:
assert len(self.ev[self.la_start_idx: self.la_end_idx]) == self.window
self.ev_local_avg.append(np.mean(self.ev[self.la_start_idx:
self.la_end_idx]))
self.la_start_idx += 1
self.la_end_idx += 1
# keep track of the offset between the current epoch and the epoch
# corresponding to the local average. NOTE: in the end the size of
# self.ev and self.ev_local_avg should be equal
self.la_epochs.update({epoch: int(epoch -
int(self.ev_freq*np.floor(self.window/2)))})
elif len(self.ev) < int(np.ceil(self.window/2)):
self.la_epochs.update({epoch: -1})
# since there is an offset between the current epoch and the local
# average epoch, loop in the last epoch to compute the local average of
# these number of elements: window, window - 1, window - 2, ..., ceil(window/2)
elif epoch == self.epochs - 1:
for i in range(int(np.ceil(self.window/2))):
assert len(self.ev[self.la_start_idx: self.la_end_idx]) == self.window - i
self.ev_local_avg.append(np.mean(self.ev[self.la_start_idx:
self.la_end_idx + 1]))
self.la_start_idx += 1
def early_stop(self, epoch, factor=1.3, es_start_epoch=10, delta=4):
""" Early stopping criterion
Args:
epoch (int): current epoch
factor (float): threshold factor for the ration between the current
and prefious eigenvalue. Default: 1.3
es_start_epoch (int): until this epoch do not consider early
stopping. Default: 20
delta (int): factor influencing which previous local average we
consider for early stopping. Default: 2
"""
if int(self.la_epochs[epoch] - self.ev_freq*delta) >= es_start_epoch:
# the current local average corresponds to
# epoch - int(self.ev_freq*np.floor(self.window/2))
current_la = self.ev_local_avg[-1]
# by default take the local average corresponding to epoch
# delta*self.ev_freq
previous_la = self.ev_local_avg[-1 - delta]
self.stop_search = current_la / previous_la > factor
if self.stop_search:
self.stop_epoch = int(self.la_epochs[epoch] - self.ev_freq*delta)
self.stop_genotype = self.genotypes[self.stop_epoch]
class AverageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
@singleton
class DecayScheduler(object):
def __init__(self, base_lr=1.0, last_iter=-1, T_max=50, T_start=0, T_stop=50, decay_type='cosine'):
self.base_lr = base_lr
self.T_max = T_max
self.T_start = T_start
self.T_stop = T_stop
self.cnt = 0
self.decay_type = decay_type
self.decay_rate = 1.0
def step(self, epoch):
if epoch >= self.T_start:
if self.decay_type == "cosine":
self.decay_rate = self.base_lr * (1 + math.cos(math.pi * epoch / (self.T_max - self.T_start))) / 2.0 if epoch <= self.T_stop else self.decay_rate
elif self.decay_type == "slow_cosine":
self.decay_rate = self.base_lr * math.cos((math.pi/2) * epoch / (self.T_max - self.T_start)) if epoch <= self.T_stop else self.decay_rate
elif self.decay_type == "linear":
self.decay_rate = self.base_lr * (self.T_max - epoch) / (self.T_max - self.T_start) if epoch <= self.T_stop else self.decay_rate
else:
self.decay_rate = self.base_lr
else:
self.decay_rate = self.base_lr
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0/batch_size))
return res
def write_yaml_results_eval(args, results_file, result_to_log):
setting = '_'.join([args.space, args.dataset])
regularization = '_'.join(
[str(args.search_dp), str(args.search_wd)]
)
results_file = os.path.join(args._save, results_file+'.yaml')
try:
with open(results_file, 'r') as f:
result = yaml.load(f)
if setting in result.keys():
if regularization in result[setting].keys():
if args.search_task_id in result[setting][regularization]:
result[setting][regularization][args.search_task_id].append(result_to_log)
else:
result[setting][regularization].update({args.search_task_id:
[result_to_log]})
else:
result[setting].update({regularization: {args.search_task_id:
[result_to_log]}})
else:
result.update({setting: {regularization: {args.search_task_id:
[result_to_log]}}})
with open(results_file, 'w') as f:
yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False)
except (AttributeError, FileNotFoundError) as e:
result = {
setting: {
regularization: {
args.search_task_id: [result_to_log]
}
}
}
with open(results_file, 'w') as f:
yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False)
def write_yaml_results(args, results_file, result_to_log):
setting = '_'.join([args.space, args.dataset])
regularization = '_'.join(
[str(args.drop_path_prob), str(args.weight_decay)]
)
results_file = os.path.join(args._save, results_file+'.yaml')
try:
with open(results_file, 'r') as f:
result = yaml.load(f)
if setting in result.keys():
if regularization in result[setting].keys():
result[setting][regularization].update({args.task_id: result_to_log})
else:
result[setting].update({regularization: {args.task_id: result_to_log}})
else:
result.update({setting: {regularization: {args.task_id: result_to_log}}})
with open(results_file, 'w') as f:
yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False)
except (AttributeError, FileNotFoundError) as e:
result = {
setting: {
regularization: {
args.task_id: result_to_log
}
}
}
with open(results_file, 'w') as f:
yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False)
class Cutout(object):
def __init__(self, length, prob=1.0):
self.length = length
self.prob = prob
def __call__(self, img):
if np.random.binomial(1, self.prob):
h, w = img.size(1), img.size(2)
mask = np.ones((h, w), np.float32)
y = np.random.randint(h)
x = np.random.randint(w)
y1 = np.clip(y - self.length // 2, 0, h)
y2 = np.clip(y + self.length // 2, 0, h)
x1 = np.clip(x - self.length // 2, 0, w)
x2 = np.clip(x + self.length // 2, 0, w)
mask[y1: y2, x1: x2] = 0.
mask = torch.from_numpy(mask)
mask = mask.expand_as(img)
img *= mask
return img
def _data_transforms_svhn(args):
SVHN_MEAN = [0.4377, 0.4438, 0.4728]
SVHN_STD = [0.1980, 0.2010, 0.1970]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(SVHN_MEAN, SVHN_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length,
args.cutout_prob))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(SVHN_MEAN, SVHN_STD),
])
return train_transform, valid_transform
def _data_transforms_cifar100(args):
CIFAR_MEAN = [0.5071, 0.4865, 0.4409]
CIFAR_STD = [0.2673, 0.2564, 0.2762]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length,
args.cutout_prob))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
return train_transform, valid_transform
def _data_transforms_cifar10(args):
CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]
train_transform = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
if args.cutout:
train_transform.transforms.append(Cutout(args.cutout_length,
args.cutout_prob))
valid_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
])
return train_transform, valid_transform
def count_parameters_in_MB(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name)/1e6
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path):
model.load_state_dict(torch.load(model_path))
def save_checkpoint(state, is_best, save, epoch, task_id):
filename = "checkpoint_{}_{}.pth.tar".format(task_id, epoch)
filename = os.path.join(save, filename)
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def load_checkpoint(model, optimizer, scheduler, architect, save, la_tracker,
epoch, task_id):
filename = "checkpoint_{}_{}.pth.tar".format(task_id, epoch)
filename = os.path.join(save, filename)
if not model.args.disable_cuda:
checkpoint = torch.load(filename, map_location="cuda:{}".format(model.args.gpu))
else:
checkpoint = torch.load(filename,map_location=torch.device('cpu'))
model.load_state_dict(checkpoint['state_dict'])
model.alphas_normal.data = checkpoint['alphas_normal']
model.alphas_reduce.data = checkpoint['alphas_reduce']
optimizer.load_state_dict(checkpoint['optimizer'])
architect.optimizer.load_state_dict(checkpoint['arch_optimizer'])
la_tracker.ev = checkpoint['ev']
la_tracker.ev_local_avg = checkpoint['ev_local_avg']
la_tracker.genotypes = checkpoint['genotypes']
la_tracker.la_epochs = checkpoint['la_epochs']
la_tracker.la_start_idx = checkpoint['la_start_idx']
la_tracker.la_end_idx = checkpoint['la_end_idx']
lr = checkpoint['lr']
return lr
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1.-drop_prob
mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob))
x.div_(keep_prob)
x.mul_(mask)
return x
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.makedirs(path, exist_ok=True)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)
def print_args(args):
for arg, val in args.__dict__.items():
print(arg + '.' * (50 - len(arg) - len(str(val))) + str(val))
print()
def get_one_hot(alphas):
start = 0
n = 2
one_hot = torch.zeros(alphas.shape)
for i in range(4):
end = start + n
w = torch.nn.functional.softmax(alphas[start:end],
dim=-1).data.cpu().numpy().copy()
edges = sorted(range(i+2), key=lambda x: -max(w[x][k] for k in range(len(w[x]))))[:2]
for j in edges:
k_best = None
for k in range(len(w[j])):
if k_best is None or w[j][k] > w[j][k_best]:
k_best = k
one_hot[start+j][k_best] = 1
start = end
n += 1
return one_hot