-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdemo_PY_LTS.hoc
247 lines (165 loc) · 5.68 KB
/
demo_PY_LTS.hoc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*----------------------------------------------------------------------------
Simplified model of bursting cortical neuron
============================================
Single-compartment model of "rebound bursts" in pyramidal
neurons (type of cell very common in association areas of
cortex). The model is based on the presence of four
voltage-dependent currents:
- INa, IK: action potentials
- IM: slow K+ current for spike-frequency adaptation
- IT: T-type calcium currents for burst generation
Model described in:
Pospischil, M., Toledo-Rodriguez, M., Monier, C., Piwkowska, Z.,
Bal, T., Fregnac, Y., Markram, H. and Destexhe, A.
Minimal Hodgkin-Huxley type models for different classes of
cortical and thalamic neurons.
Biological Cybernetics 99: 427-441, 2008.
The model was originally published in the following reference:
Destexhe, A. Contreras, D. and Steriade, M.
LTS cells in cerebral cortex and their role in generating
spike-and-wave oscillations.
Neurocomputing 38: 555-563 (2001).
Alain Destexhe, CNRS, 2009
http://cns.iaf.cnrs-gif.fr
----------------------------------------------------------------------------*/
//----------------------------------------------------------------------------
// load and define general graphical procedures
//----------------------------------------------------------------------------
load_file("stdrun.hoc")
objectvar g[20] // max 20 graphs
ngraph = 0
proc addgraph() { local ii // define subroutine to add a new graph
// addgraph("variable", minvalue, maxvalue)
ngraph = ngraph+1
ii = ngraph-1
g[ii] = new Graph()
g[ii].size(tstart,tstop,$2,$3)
g[ii].xaxis()
g[ii].yaxis()
g[ii].addvar($s1,1,0)
g[ii].save_name("graphList[0].")
graphList[0].append(g[ii])
}
proc addtext() { local ii // define subroutine to add a text graph
// addtext("text")
ngraph = ngraph+1
ii = ngraph-1
g[ii] = new Graph()
g[ii].size(0,tstop,0,1)
g[ii].xaxis(3)
g[ii].yaxis(3)
g[ii].label(0.1,0.8,$s1)
g[ii].save_name("graphList[0].")
graphList[0].append(g[ii])
text_id = ii
}
proc addline() { // to add a comment to the text window
// addline("text")
g[text_id].label($s1)
}
nrnmainmenu() // create main menu
nrncontrolmenu() // crate control menu
//----------------------------------------------------------------------------
// transient time
//----------------------------------------------------------------------------
trans = 0000
print " "
print ">> Transient time of ",trans," ms"
print " "
//----------------------------------------------------------------------------
// create PY cells
//----------------------------------------------------------------------------
print " "
print "<<==================================>>"
print "<< CREATE CELLS >>"
print "<<==================================>>"
print " "
xopen("sPYr_template") // read geometry file
ncells = 1 // nb of cells in each layer <<>>
objectvar PY[ncells]
for i=0,ncells-1 {
PY[i] = new sPYr()
}
//----------------------------------------------------------------------------
// Rebound parameters
//----------------------------------------------------------------------------
// T-current density adjusted to delaPena & Geigo-Barrientos
PY[0].soma {
gcabar_it = 4e-4
gkbar_im = 3e-5
g_pas = 1e-5
e_pas = -85
gnabar_hh2 = 0.05
gkbar_hh2 = 0.005
}
// this parameter set (above) is for bursting behavior; for
// regular spiking:
// e_pas = -75
// El[0].stim.amp = 0.12
// LTS:
// e_pas = -60
// El[0].stim.amp = -0.075
// bursting:
// e_pas = -85
// El[0].stim.amp = 0.15
// classic RS and FS behavior are obtained by blocking IT and IM successively
//----------------------------------------------------------------------------
// insert electrode in each PY cell
//----------------------------------------------------------------------------
if(ismenu==0) {
load_file("electrod.hoc") // electrode template
ismenu = 1
}
objectvar El[ncells] // create electrodes
CURR_AMP = 0.15
for i=0,ncells-1 { // insert one in each cell
PY[i].soma El[i] = new Electrode()
PY[i].soma El[i].stim.loc(0.5)
El[i].stim.del = 400
El[i].stim.dur = 400
El[i].stim.amp = CURR_AMP
}
electrodes_present=1
//----------------------------------------------------------------------------
// setup simulation parameters
//----------------------------------------------------------------------------
Dt = .1 // macroscopic time step <<>>
npoints = 10000
dt = 0.1 // must be submultiple of Dt
tstart = trans
tstop = trans + npoints * Dt
runStopAt = tstop
steps_per_ms = 5
celsius = 36
v_init = -84
//----------------------------------------------------------------------------
// add graphs
//----------------------------------------------------------------------------
strdef gtxt
if(batch == 0) {
addgraph("PY[0].soma.m_im",0,1)
// addgraph("PY[0].soma.m_iahp",0,1)
for i=0,ncells-1 {
sprint(gtxt,"PY[%d].soma.v(0.5)",i)
addgraph(gtxt,-120,40)
}
}
//----------------------------------------------------------------------------
// add text
//----------------------------------------------------------------------------
access PY[0].soma
proc text() {
sprint(gtxt,"%d PY cells",ncells)
addtext(gtxt)
sprint(gtxt,"Passive: gleak=%g Eleak=%g",PY.soma.g_pas,PY.soma.e_pas)
addline(gtxt)
sprint(gtxt,"HH: gNa=%g, gK=%g, vtraub=%g",PY.soma.gnabar_hh2,\
PY.soma.gkbar_hh2,PY.soma.vtraub_hh2)
addline(gtxt)
sprint(gtxt,"IM: g=%g, taumax=%g",PY.soma.gkbar_im,taumax_im)
addline(gtxt)
sprint(gtxt,"Ca++: tau=%g, depth=%g, cainf=%g",taur_cad,depth_cad,cainf_cad)
addline(gtxt)
sprint(gtxt,"IT: g=%g",PY.soma.gcabar_it)
addline(gtxt)
}