-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathvisualize.py
466 lines (435 loc) · 15.6 KB
/
visualize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
"""
A self-contained python script that visualizes a set of cuboids considering
vertex visibility.
It can be used to genereate qualitative results for the predictions of a
3D object detection model. The KITTI annotation style is used for example,
but you can easily adapt it to other annotation styles.
"""
import argparse
import numpy as np
import os
import matplotlib.pyplot as plt
import matplotlib.cm as cm
import imageio
import csv
import cv2
import torch
import torchvision
# annotation style of KITTI dataset
FIELDNAMES = ['type',
'truncated',
'occluded',
'alpha',
'xmin',
'ymin',
'xmax',
'ymax',
'dh',
'dw',
'dl',
'lx',
'ly',
'lz',
'ry',
'score'
]
TYPE_ID_CONVERSION = {
'Car': 0,
'Cyclist': 1,
'Pedestrian': 2,
}
def parse_args():
parser = argparse.ArgumentParser(description='a general parser')
# path to the configuration file
parser.add_argument('--pred_dir',
help='path to the predicted file',
type=str
)
parser.add_argument('--data_dir',
default="../data/kitti",
type=str
)
parser.add_argument('--split',
default="training",
type=str
)
parser.add_argument('--save_dir',
default="../data/kitti/visualization",
type=str
)
parser.add_argument('--num_show',
default=1,
type=int
)
args, unknown = parser.parse_known_args()
return args
def csv_read_annot(file_path, fieldnames):
"""
Read instance attributes in the KITTI format. Instances not in the
selected class will be ignored.
A list of python dictionary is returned where each dictionary
represents one instsance.
"""
annotations = []
with open(file_path, 'r') as csv_file:
reader = csv.DictReader(csv_file, delimiter=' ', fieldnames=fieldnames)
for line, row in enumerate(reader):
annot_dict = {
"class": row["type"],
"label": TYPE_ID_CONVERSION[row["type"]],
"truncation": float(row["truncated"]),
"occlusion": float(row["occluded"]),
"alpha": float(row["alpha"]),
"dimensions": [float(row['dl']),
float(row['dh']),
float(row['dw'])
],
"locations": [float(row['lx']),
float(row['ly']),
float(row['lz'])
],
"rot_y": float(row["ry"]),
"bbox": [float(row["xmin"]),
float(row["ymin"]),
float(row["xmax"]),
float(row["ymax"])
]
}
if "score" in fieldnames:
annot_dict["score"] = float(row["score"])
annotations.append(annot_dict)
return annotations
def csv_read_calib(file_path):
"""
Read camera projection matrix in the KITTI format.
"""
with open(file_path, 'r') as csv_file:
reader = csv.reader(csv_file, delimiter=' ')
for line, row in enumerate(reader):
if row[0] == 'P2:':
P = row[1:]
P = [float(i) for i in P]
P = np.array(P, dtype=np.float32).reshape(3, 4)
break
return P
def load_annotations(label_path, calib_path, fieldnames=FIELDNAMES):
"""
Read 3D annotation and camera parameters.
"""
annotations = csv_read_annot(label_path, fieldnames)
# get camera intrinsic matrix K
P = csv_read_calib(calib_path)
return annotations, P
def construct_box_3d(l, h, w):
"""
Construct 3D bounding box corners in the canonical pose.
"""
x_corners = [0.5*l, l, l, l, l, 0, 0, 0, 0]
y_corners = [0.5*h, 0, h, 0, h, 0, h, 0, h]
z_corners = [0.5*w, w, w, 0, 0, w, w, 0, 0]
x_corners += - np.float32(l) / 2
y_corners += - np.float32(h)
z_corners += - np.float32(w) / 2
corners_3d = np.array([x_corners, y_corners, z_corners])
return corners_3d
def get_cam_cord(shift, ry, dimension, locs):
"""
Construct 3D bounding box corners in the camera coordinate system.
"""
l, h, w = dimension
corners_3d_fixed = construct_box_3d(l, h, w)
x, y, z = locs[0], locs[1], locs[2] # bottom center of the labeled 3D box
rot_maty = np.array([[np.cos(ry), 0, np.sin(ry)],
[0, 1, 0],
[-np.sin(ry), 0, np.cos(ry)]])
corners_3d = np.matmul(rot_maty, corners_3d_fixed)
# translation
corners_3d += np.array([x, y, z]).reshape([3, 1])
camera_coordinates = corners_3d + shift
return camera_coordinates
def project_3d_to_2d(points, K):
"""
Get 2D projection of 3D points in the camera coordinate system.
"""
projected = K @ points
projected[:2, :] /= projected[2, :]
return projected
def plot_lines(ax,
points,
connections,
dimension,
lw=4,
c='k',
linestyle='-',
alpha=1,
add_index=False,
visibility=None
):
"""
Plot 2D/3D lines given points and connection.
connections are of shape [n_lines, 2]
"""
if add_index:
for idx in range(len(points)):
if dimension == 2:
x, y = points[idx][0], points[idx][1]
ax.text(x, y, str(idx))
elif dimension == 3:
x, y, z = points[idx][0], points[idx][1], points[idx][2]
ax.text(x, y, z, str(idx))
connections = connections.reshape(-1, 2)
original_lstyle = linestyle
# original_color = c
original_alpha = alpha
for connection in connections:
x = [points[connection[0]][0], points[connection[1]][0]]
y = [points[connection[0]][1], points[connection[1]][1]]
if visibility is not None:
vis1, vis2 = visibility[connection[0]], visibility[connection[1]]
linestyle = '--' if ((not vis1) or (not vis2)) else original_lstyle
# c = 'y' if ((not vis1) or (not vis2)) else original_color
alpha = 0.5 if ((not vis1) or (not vis2)) else original_alpha
if dimension == 3:
z = [points[connection[0]][2], points[connection[1]][2]]
line, = ax.plot(x, y, z, lw=lw, c=c, linestyle=linestyle, alpha=alpha)
else:
line, = ax.plot(x, y, lw=lw, c=c, linestyle=linestyle, alpha=alpha)
plt.show()
return line
def plot_3d_bbox(ax,
bbox_3d_projected,
color=None,
linestyle='-',
add_index=False,
visibility=None
):
"""
Draw the projected edges of a 3D cuboid.
"""
c = np.random.rand(3) if color is None else color
plot_lines(ax,
bbox_3d_projected,
plot_3d_bbox.connections,
dimension=2,
c=c,
linestyle=linestyle,
add_index=add_index,
visibility=visibility
)
return
plot_3d_bbox.connections = np.array([[0, 1],
[0, 2],
[1, 3],
[2, 3],
[4, 5],
[5, 7],
[4, 6],
[6, 7],
[0, 4],
[1, 5],
[2, 6],
[3, 7]])
def ray_intersect_triangle(p0, p1, triangle):
"""
Tests if a ray starting at point p0, in the direction
p1 - p0, will intersect with the triangle.
arguments:
p0, p1: numpy.ndarray, both with shape (3,) for x, y, z.
triangle: numpy.ndarray, shaped (3,3), with each row
representing a vertex and three columns for x, y, z.
returns:
0.0 if ray does not intersect triangle,
1.0 if it will intersect the triangle,
2.0 if starting point lies in the triangle.
"""
v0, v1, v2 = triangle
u = v1 - v0
v = v2 - v0
normal = np.cross(u, v)
b = np.inner(normal, p1 - p0)
a = np.inner(normal, v0 - p0)
if (b == 0.0):
# ray is parallel to the plane
if a != 0.0:
# ray is outside but parallel to the plane
return 0
else:
# ray is parallel and lies in the plane
rI = 0.0
else:
rI = a / b
if rI < 0.0:
return 0
w = p0 + rI * (p1 - p0) - v0
denom = np.inner(u, v) * np.inner(u, v) - \
np.inner(u, u) * np.inner(v, v)
si = (np.inner(u, v) * np.inner(w, v) - \
np.inner(v, v) * np.inner(w, u)) / denom
if (si < 0.0) | (si > 1.0):
return 0
ti = (np.inner(u, v) * np.inner(w, u) - \
np.inner(u, u) * np.inner(w, v)) / denom
if (ti < 0.0) | (si + ti > 1.0):
return 0
if (rI == 0.0):
return 2
return 1
def get_visibility(box3d, triangles):
"""
Get visibility for each vertex of a 3D bounding box given all the triangles
in a scene.
box3d: [8, 3] The vertex coordinates in the camera coordinate system.
triangles: [N, 3, 3]
"""
visibility = np.ones(8, dtype=np.bool)
p1 = np.zeros(3)
for idx, p0 in enumerate(box3d):
intersects = set()
for triangle in triangles:
intersects.add(ray_intersect_triangle(p0, p1, triangle))
if 1 in intersects:
visibility[idx] = False
return visibility
def get_color(style='random', z=None, MAXIMUM_DEPTH=45.):
if style=='random':
NUM_COLORS = 10
CMAP = get_cmap(NUM_COLORS)
fillcolor = CMAP(np.random.randint(0, NUM_COLORS))
elif style == 'depth':
assert z is not None
cmap = cm.get_cmap('autumn')
rgba = cmap(z/MAXIMUM_DEPTH)
fillcolor = rgba[:-1]
return fillcolor
def render(ax, K, cam_cord, visibility):
fillcolor = get_color(z=cam_cord[0,2])
# get 2D projections
projected = project_3d_to_2d(cam_cord, K)
scatter_c = np.array([[fillcolor[0], fillcolor[1], fillcolor[2]]])
ax.scatter(projected[0, 1:], projected[1, 1:], marker='o', c=scatter_c, s=10)
ax.set_xlim([0, 1150])
ax.set_ylim([0, 350])
ax.invert_yaxis()
plot_3d_bbox(ax, projected[:2, 1:].T, color=fillcolor, visibility=visibility)
faces = [projected[:2, [2, 1, 3, 4]],
projected[:2, [8, 7, 5, 6]],
projected[:2, [6, 5, 1, 2]],
projected[:2, [4, 3, 7, 8]],
projected[:2, [1, 5, 7, 3]],
projected[:2, [8, 6, 2, 4]]]
for idx, face in enumerate(faces):
if idx == 5:
ax.fill(face[0,:], face[1,:], c=fillcolor, alpha=0.15, hatch='//')
else:
ax.fill(face[0,:], face[1,:], c=fillcolor, alpha=0.15)
return
def get_triangles(box3d):
v1s = box3d[get_triangles.connections[:,0]][:, None, :]
v2s = box3d[get_triangles.connections[:,1]][:, None, :]
v3s = box3d[get_triangles.connections[:,2]][:, None, :]
return np.concatenate((v1s, v2s, v3s), axis=1)
get_triangles.connections = np.array([[1,3,4],
[1,2,4],
[5,7,8],
[5,6,8],
[1,5,6],
[1,2,6],
[3,7,8],
[3,4,8],
[1,5,7],
[1,3,7],
[2,6,8],
[2,4,8]])
def get_cmap(n, name='hsv'):
'''Returns a function that maps each index in 0, 1, ..., n-1 to a distinct
RGB color; the keyword argument name must be a standard mpl colormap name.'''
return plt.cm.get_cmap(name, n)
def show(image_path,
pred_path,
calib_path,
save_dir=None
):
"""
Show the annotation of an image with visibility considered.
"""
image_name = image_path.split(os.path.sep)[-1]
anns, P = load_annotations(pred_path, calib_path)
K = P[:, :3]
shift = np.linalg.inv(K) @ P[:, 3].reshape(3,1)
image = imageio.imread(image_path)
fig = plt.figure(figsize=(11.3, 9))
ax = plt.subplot(111)
ax.imshow(image)
all_boxes_3d = []
all_triangles = []
for i, a in enumerate(anns):
a = a.copy()
obj_class = a["label"]
dimension = a["dimensions"]
locs = np.array(a["locations"])
rot_y = np.array(a["rot_y"])
cam_cord = get_cam_cord(shift, rot_y, dimension, locs)
all_boxes_3d.append(cam_cord)
all_triangles.append(get_triangles(cam_cord.T))
all_triangles = np.concatenate(all_triangles, axis=0)
for box_3d in all_boxes_3d:
render(ax, K, box_3d, get_visibility(box_3d.T[1:,:], all_triangles))
if save_dir is not None:
if not os.path.exists(save_dir):
os.makedirs(save_dir)
output_path = os.path.join(save_dir, image_name)
plt.gca().set_axis_off()
plt.subplots_adjust(top = 1,
bottom = 0,
right = 1,
left = 0,
hspace = 0,
wspace = 0
)
plt.margins(0,0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.savefig(output_path, dpi=100, bbox_inches = 'tight', pad_inches = 0)
return fig
def visualize(args):
name_list = os.listdir(args.pred_dir)
cnt = 0
for name in name_list:
# Example: name = "000002.txt"
img_path = os.path.join(args.data_dir, args.split, "image_2", name[:-3] + "png")
pred_path = os.path.join(args.pred_dir, name)
calib_path = os.path.join(args.data_dir, args.split, "calib", name)
fig = show(img_path, pred_path, calib_path, args.save_dir)
cnt += 1
if cnt > args.num_show:
break
plt.close(fig)
return
def save_batch_image(image_dir,
file_name='./batch.png',
ncol=3,
padding=1
):
'''
batch_image: [batch_size, channel, height, width]
}
'''
all_images = []
names = os.listdir(image_dir)
for name in names:
img_path = os.path.join(image_dir, name)
img = imageio.imread(img_path)
img = img.transpose(2, 0, 1)
all_images.append(img[None,:,:,:])
batch_image = torch.from_numpy(np.concatenate(all_images, axis=0))
grid = torchvision.utils.make_grid(batch_image, ncol, padding)
ndarr = grid.permute(1, 2, 0).data.numpy()
ndarr = ndarr.copy()
cv2.imwrite(file_name, cv2.cvtColor(ndarr, cv2.COLOR_RGB2BGR))
return
def main():
args = parse_args()
visualize(args)
return
if __name__ == "__main__":
main()