-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCredit_card_fraud_detection.py
234 lines (176 loc) · 9.38 KB
/
Credit_card_fraud_detection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
# IMPORTING PACKAGES
import pandas as pd # data processing
import numpy as np # working with arrays
import matplotlib.pyplot as plt # visualization
from termcolor import colored as cl # text customization
import itertools # advanced tools
from sklearn.preprocessing import StandardScaler # data normalization
from sklearn.model_selection import train_test_split # data split
from sklearn.tree import DecisionTreeClassifier # Decision tree algorithm
from sklearn.neighbors import KNeighborsClassifier # KNN algorithm
from sklearn.linear_model import LogisticRegression # Logistic regression algorithm
from sklearn.svm import SVC # SVM algorithm
from sklearn.ensemble import RandomForestClassifier # Random forest tree algorithm
from xgboost import XGBClassifier # XGBoost algorithm
from sklearn.metrics import confusion_matrix # evaluation metric
from sklearn.metrics import accuracy_score # evaluation metric
from sklearn.metrics import f1_score # evaluation metric
# IMPORTING DATA
df = pd.read_csv('creditcard.csv')
df.drop('Time', axis = 1, inplace = True)
print(df.head())
# EDA
# 1. Count & percentage
cases = len(df)
nonfraud_count = len(df[df.Class == 0])
fraud_count = len(df[df.Class == 1])
fraud_percentage = round(fraud_count/nonfraud_count*100, 2)
print(cl('CASE COUNT', attrs = ['bold']))
print(cl('--------------------------------------------', attrs = ['bold']))
print(cl('Total number of cases are {}'.format(cases), attrs = ['bold']))
print(cl('Number of Non-fraud cases are {}'.format(nonfraud_count), attrs = ['bold']))
print(cl('Number of Non-fraud cases are {}'.format(fraud_count), attrs = ['bold']))
print(cl('Percentage of fraud cases is {}'.format(fraud_percentage), attrs = ['bold']))
print(cl('--------------------------------------------', attrs = ['bold']))
# 2. Description
nonfraud_cases = df[df.Class == 0]
fraud_cases = df[df.Class == 1]
print(cl('CASE AMOUNT STATISTICS', attrs = ['bold']))
print(cl('--------------------------------------------', attrs = ['bold']))
print(cl('NON-FRAUD CASE AMOUNT STATS', attrs = ['bold']))
print(nonfraud_cases.Amount.describe())
print(cl('--------------------------------------------', attrs = ['bold']))
print(cl('FRAUD CASE AMOUNT STATS', attrs = ['bold']))
print(fraud_cases.Amount.describe())
print(cl('--------------------------------------------', attrs = ['bold']))
# DATA SPLIT
X = df.drop('Class', axis = 1).values
y = df['Class'].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
print(cl('X_train samples : ', attrs = ['bold']), X_train[:1])
print(cl('X_test samples : ', attrs = ['bold']), X_test[0:1])
print(cl('y_train samples : ', attrs = ['bold']), y_train[0:10])
print(cl('y_test samples : ', attrs = ['bold']), y_test[0:10])
# MODELING
# 1. Decision Tree
tree_model = DecisionTreeClassifier(max_depth = 4, criterion = 'entropy')
tree_model.fit(X_train, y_train)
tree_yhat = tree_model.predict(X_test)
# 2. K-Nearest Neighbors
n = 5
knn = KNeighborsClassifier(n_neighbors = n)
knn.fit(X_train, y_train)
knn_yhat = knn.predict(X_test)
# 3. Logistic Regression
lr = LogisticRegression()
lr.fit(X_train, y_train)
lr_yhat = lr.predict(X_test)
# 4. SVM
svm = SVC()
svm.fit(X_train, y_train)
svm_yhat = svm.predict(X_test)
# 5. Random Forest Tree
rf = RandomForestClassifier(max_depth = 4)
rf.fit(X_train, y_train)
rf_yhat = rf.predict(X_test)
# 6. XGBoost
xgb = XGBClassifier(max_depth = 4)
xgb.fit(X_train, y_train)
xgb_yhat = xgb.predict(X_test)
# EVALUATION
# 1. Accuracy score
print(cl('ACCURACY SCORE', attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('Accuracy score of the Decision Tree model is {}'.format(accuracy_score(y_test, tree_yhat)), attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('Accuracy score of the KNN model is {}'.format(accuracy_score(y_test, knn_yhat)), attrs = ['bold'], color = 'green'))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('Accuracy score of the Logistic Regression model is {}'.format(accuracy_score(y_test, lr_yhat)), attrs = ['bold'], color = 'red'))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('Accuracy score of the SVM model is {}'.format(accuracy_score(y_test, svm_yhat)), attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('Accuracy score of the Random Forest Tree model is {}'.format(accuracy_score(y_test, rf_yhat)), attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('Accuracy score of the XGBoost model is {}'.format(accuracy_score(y_test, xgb_yhat)), attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
# 2. F1 score
print(cl('F1 SCORE', attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('F1 score of the Decision Tree model is {}'.format(f1_score(y_test, tree_yhat)), attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('F1 score of the KNN model is {}'.format(f1_score(y_test, knn_yhat)), attrs = ['bold'], color = 'green'))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('F1 score of the Logistic Regression model is {}'.format(f1_score(y_test, lr_yhat)), attrs = ['bold'], color = 'red'))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('F1 score of the SVM model is {}'.format(f1_score(y_test, svm_yhat)), attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('F1 score of the Random Forest Tree model is {}'.format(f1_score(y_test, rf_yhat)), attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
print(cl('F1 score of the XGBoost model is {}'.format(f1_score(y_test, xgb_yhat)), attrs = ['bold']))
print(cl('------------------------------------------------------------------------', attrs = ['bold']))
# 3. Confusion Matrix
# defining the plot function
def plot_confusion_matrix(cm, classes, title, normalize = False, cmap = plt.cm.Blues):
title = 'Confusion Matrix of {}'.format(title)
if normalize:
cm = cm.astype(float) / cm.sum(axis=1)[:, np.newaxis]
plt.imshow(cm, interpolation = 'nearest', cmap = cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation = 45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment = 'center',
color = 'white' if cm[i, j] > thresh else 'black')
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
# Compute confusion matrix for the models
tree_matrix = confusion_matrix(y_test, tree_yhat, labels = [0, 1]) # Decision Tree
knn_matrix = confusion_matrix(y_test, knn_yhat, labels = [0, 1]) # K-Nearest Neighbors
lr_matrix = confusion_matrix(y_test, lr_yhat, labels = [0, 1]) # Logistic Regression
svm_matrix = confusion_matrix(y_test, svm_yhat, labels = [0, 1]) # Support Vector Machine
rf_matrix = confusion_matrix(y_test, rf_yhat, labels = [0, 1]) # Random Forest Tree
xgb_matrix = confusion_matrix(y_test, xgb_yhat, labels = [0, 1]) # XGBoost
# Plot the confusion matrix
plt.rcParams['figure.figsize'] = (6, 6)
# 1. Decision tree
tree_cm_plot = plot_confusion_matrix(tree_matrix,
classes = ['Non-Default(0)','Default(1)'],
normalize = False, title = 'Decision Tree')
plt.savefig('tree_cm_plot.png')
plt.show()
# 2. K-Nearest Neighbors
knn_cm_plot = plot_confusion_matrix(knn_matrix,
classes = ['Non-Default(0)','Default(1)'],
normalize = False, title = 'KNN')
plt.savefig('knn_cm_plot.png')
plt.show()
# 3. Logistic regression
lr_cm_plot = plot_confusion_matrix(lr_matrix,
classes = ['Non-Default(0)','Default(1)'],
normalize = False, title = 'Logistic Regression')
plt.savefig('lr_cm_plot.png')
plt.show()
# 4. Support Vector Machine
svm_cm_plot = plot_confusion_matrix(svm_matrix,
classes = ['Non-Default(0)','Default(1)'],
normalize = False, title = 'SVM')
plt.savefig('svm_cm_plot.png')
plt.show()
# 5. Random forest tree
rf_cm_plot = plot_confusion_matrix(rf_matrix,
classes = ['Non-Default(0)','Default(1)'],
normalize = False, title = 'Random Forest Tree')
plt.savefig('rf_cm_plot.png')
plt.show()
# 6. XGBoost
xgb_cm_plot = plot_confusion_matrix(xgb_matrix,
classes = ['Non-Default(0)','Default(1)'],
normalize = False, title = 'XGBoost')
plt.savefig('xgb_cm_plot.png')
plt.show()