-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnetcdfToCog.py
98 lines (82 loc) · 3.56 KB
/
netcdfToCog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import click
import xarray as xr
import rasterio
from rasterio.transform import from_origin
from rasterio.crs import CRS
from rasterio.warp import calculate_default_transform, reproject, Resampling
from rio_cogeo.cogeo import cog_translate
from rio_cogeo.profiles import cog_profiles
import numpy as np
def netcdf_to_cog(netcdf_path, output_tiff):
# Open NetCDF file
ds = xr.open_dataset(netcdf_path)
# Ensure required fields exist
if 'lat' not in ds or 'lon' not in ds:
raise ValueError("NetCDF file must contain 'lat' and 'lon' variables")
# Extract data (assuming a variable to convert is provided)
var_name = [var for var in ds.data_vars if var not in ['lat', 'lon']][0] # Choose first data variable
data = ds[var_name].values
# Get latitude and longitude
lat = ds['lat'].values
lon = ds['lon'].values
# Ensure longitude is wrapped correctly (-180 to 180)
if lon.min() < -180 or lon.max() > 180:
raise ValueError("Longitude values must be within -180 to 180 degrees")
# Ensure latitude is in descending order
if lat[0] < lat[-1]:
lat = lat[::-1]
data = np.flipud(data)
# Handle NaNs
data = np.nan_to_num(data, nan=-9999)
# Define transform (assuming regularly spaced grid)
transform = from_origin(lon.min(), lat.max(), np.abs(lon[1] - lon[0]), np.abs(lat[1] - lat[0]))
# Write to initial GeoTIFF in EPSG:4326
temp_tiff = output_tiff.replace('.tif', '_temp.tif')
with rasterio.open(
temp_tiff, "w",
driver="GTiff",
height=data.shape[0],
width=data.shape[1],
count=1,
dtype=str(data.dtype),
crs=CRS.from_epsg(4326),
transform=transform,
nodata=-9999,
) as dst:
dst.write(data, 1)
# Reproject to EPSG:3857 using rasterio
reprojected_tiff = output_tiff.replace('.tif', '_3857.tif')
with rasterio.open(temp_tiff) as src:
orig_res_x = (src.bounds.right - src.bounds.left) / src.width
orig_res_y = (src.bounds.top - src.bounds.bottom) / src.height
# Convert resolution to meters for EPSG:3857 (Web Mercator)
meters_per_degree = 111320 # Approximate at the equator
target_res_x = orig_res_x * meters_per_degree
target_res_y = orig_res_y * meters_per_degree
transform, width, height = calculate_default_transform(
src.crs, "EPSG:3857", src.width, src.height, *src.bounds, resolution=(target_res_x, target_res_y)
)
kwargs = src.meta.copy()
kwargs.update({"crs": "EPSG:3857", "transform": transform, "width": width, "height": height})
with rasterio.open(reprojected_tiff, "w", **kwargs) as dst:
for i in range(1, src.count + 1):
reproject(
source=rasterio.band(src, i),
destination=rasterio.band(dst, i),
src_transform=src.transform,
src_crs=src.crs,
dst_transform=transform,
dst_crs="EPSG:3857",
resampling=Resampling.bilinear
)
# Convert to COG
cog_translate(reprojected_tiff, output_tiff, cog_profiles.get("raw"), overview_resampling="average")
click.echo(f"COG saved to {output_tiff}")
@click.command()
@click.argument("netcdf_path", type=click.Path(exists=True))
@click.argument("output_tiff", type=click.Path())
def cli(netcdf_path, output_tiff):
"Convert a NetCDF file to a COG GeoTIFF."
netcdf_to_cog(netcdf_path, output_tiff)
if __name__ == "__main__":
cli()