-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathncnn_pose.cpp
217 lines (190 loc) · 7.07 KB
/
ncnn_pose.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
#include "net.h"
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
#include <stdio.h>
#include <vector>
#include <algorithm>
//using namespace cv;
using namespace std;
//-----------------------------------------------------------------------------------------------------------------------
struct KeyPoint
{
cv::Point2f p;
float prob;
};
//-----------------------------------------------------------------------------------------------------------------------
static void draw_pose(const cv::Mat& image, const std::vector<KeyPoint>& keypoints)
{
// draw bone
static const int joint_pairs[16][2] = {
{0, 1}, {1, 3}, {0, 2}, {2, 4}, {5, 6}, {5, 7}, {7, 9}, {6, 8}, {8, 10}, {5, 11}, {6, 12}, {11, 12}, {11, 13}, {12, 14}, {13, 15}, {14, 16}
};
for (int i = 0; i < 16; i++)
{
const KeyPoint& p1 = keypoints[joint_pairs[i][0]];
const KeyPoint& p2 = keypoints[joint_pairs[i][1]];
if (p1.prob < 0.2f || p2.prob < 0.2f)
continue;
cv::line(image, p1.p, p2.p, cv::Scalar(255, 0, 0), 2);
}
// draw joint
for (size_t i = 0; i < keypoints.size(); i++)
{
const KeyPoint& keypoint = keypoints[i];
//fprintf(stderr, "%.2f %.2f = %.5f\n", keypoint.p.x, keypoint.p.y, keypoint.prob);
if (keypoint.prob < 0.2f)
continue;
cv::circle(image, keypoint.p, 3, cv::Scalar(0, 255, 0), -1);
}
}
//-----------------------------------------------------------------------------------------------------------------------
int runpose(cv::Mat& roi, ncnn::Net &posenet, int pose_size_width, int pose_size_height, std::vector<KeyPoint>& keypoints,float x1, float y1)
{
int w = roi.cols;
int h = roi.rows;
ncnn::Mat in = ncnn::Mat::from_pixels_resize(roi.data, ncnn::Mat::PIXEL_BGR2RGB,\
roi.cols, roi.rows, pose_size_width, pose_size_height);
//数据预处理
const float mean_vals[3] = {0.485f * 255.f, 0.456f * 255.f, 0.406f * 255.f};
const float norm_vals[3] = {1 / 0.229f / 255.f, 1 / 0.224f / 255.f, 1 / 0.225f / 255.f};
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = posenet.create_extractor();
ex.set_num_threads(4);
ex.input("data", in);
ncnn::Mat out;
ex.extract("hybridsequential0_conv7_fwd", out);
keypoints.clear();
for (int p = 0; p < out.c; p++)
{
const ncnn::Mat m = out.channel(p);
float max_prob = 0.f;
int max_x = 0;
int max_y = 0;
for (int y = 0; y < out.h; y++)
{
const float* ptr = m.row(y);
for (int x = 0; x < out.w; x++)
{
float prob = ptr[x];
if (prob > max_prob)
{
max_prob = prob;
max_x = x;
max_y = y;
}
}
}
KeyPoint keypoint;
keypoint.p = cv::Point2f(max_x * w / (float)out.w+x1, max_y * h / (float)out.h+y1);
keypoint.prob = max_prob;
keypoints.push_back(keypoint);
}
return 0;
}
//-----------------------------------------------------------------------------------------------------------------------
int demo(cv::Mat& image, ncnn::Net &detectornet, int detector_size_width, int detector_size_height,
ncnn::Net &posenet, int pose_size_width, int pose_size_height)
{
cv::Mat bgr = image.clone();
int img_w = bgr.cols;
int img_h = bgr.rows;
ncnn::Mat in = ncnn::Mat::from_pixels_resize(bgr.data, ncnn::Mat::PIXEL_BGR2RGB,\
bgr.cols, bgr.rows, detector_size_width, detector_size_height);
//数据预处理
const float mean_vals[3] = {0.f, 0.f, 0.f};
const float norm_vals[3] = {1/255.f, 1/255.f, 1/255.f};
in.substract_mean_normalize(mean_vals, norm_vals);
ncnn::Extractor ex = detectornet.create_extractor();
ex.set_num_threads(4);
ex.input("data", in);
ncnn::Mat out;
ex.extract("output", out);
for (int i = 0; i < out.h; i++)
{
float x1, y1, x2, y2;
float pw,ph,cx,cy;
const float* values = out.row(i);
x1 = values[2] * img_w;
y1 = values[3] * img_h;
x2 = values[4] * img_w;
y2 = values[5] * img_h;
pw = x2-x1;
ph = y2-y1;
cx = x1+0.5*pw;
cy = y1+0.5*ph;
x1 = cx - 0.7*pw;
y1 = cy - 0.6*ph;
x2 = cx + 0.7*pw;
y2 = cy + 0.6*ph;
//处理坐标越界问题
if(x1<0) x1=0;
if(y1<0) y1=0;
if(x2<0) x2=0;
if(y2<0) y2=0;
if(x1>img_w) x1=img_w;
if(y1>img_h) y1=img_h;
if(x2>img_w) x2=img_w;
if(y2>img_h) y2=img_h;
//截取人体ROI
//printf("x1:%f y1:%f x2:%f y2:%f\n",x1,y1,x2,y2);
cv::Mat roi;
roi = bgr(cv::Rect(x1, y1, x2-x1, y2-y1)).clone();
std::vector<KeyPoint> keypoints;
runpose(roi, posenet, pose_size_width, pose_size_height,keypoints, x1, y1);
draw_pose(image, keypoints);
cv::rectangle (image, cv::Point(x1, y1), cv::Point(x2, y2), cv::Scalar(255, 0, 255), 2, 8, 0);
}
return 0;
}
//-----------------------------------------------------------------------------------------------------------------------
int main(int argc,char ** argv)
{
float f;
float FPS[16];
int i;
int Fcnt=0;
cv::Mat frame;
chrono::steady_clock::time_point Tbegin, Tend;
for(i=0;i<16;i++) FPS[i]=0.0;
//定义检测器
ncnn::Net detectornet;
detectornet.load_param("./person_detector.param");
detectornet.load_model("./person_detector.bin");
int detector_size_width = 320;
int detector_size_height = 320;
//定义人体姿态关键点预测器
ncnn::Net posenet;
posenet.load_param("./Ultralight-Nano-SimplePose.param");
posenet.load_model("./Ultralight-Nano-SimplePose.bin");
int pose_size_width = 192;
int pose_size_height = 256;
cv::VideoCapture cap("Dance.mp4");
if (!cap.isOpened()) {
cerr << "ERROR: Unable to open the camera" << endl;
return 0;
}
Tbegin = chrono::steady_clock::now();
cout << "Start grabbing, press ESC on Live window to terminate" << endl;
while(1){
cap >> frame;
if (frame.empty()) {
cerr << "End of movie" << endl;
break;
}
demo(frame, detectornet, detector_size_width, detector_size_height, posenet, pose_size_width,pose_size_height);
Tend = chrono::steady_clock::now();
//calculate frame rate
f = chrono::duration_cast <chrono::milliseconds> (Tend - Tbegin).count();
Tbegin = chrono::steady_clock::now();
FPS[((Fcnt++)&0x0F)]=1000.0/f;
for(f=0.0, i=0;i<16;i++){ f+=FPS[i]; }
putText(frame, cv::format("FPS %0.2f",f/16),cv::Point(10,20),cv::FONT_HERSHEY_SIMPLEX, 0.6, cv::Scalar(0, 0, 255));
//show output
cv::imshow("RPi 4 - 1.95 GHz - 2 Mb RAM", frame);
char esc = cv::waitKey(5);
if(esc == 27) break;
}
return 0;
}