- 2024.12.25
- Add document preprocessing solutions for distortion correction, deblurring, shadow removal, and binarization. RapidUnDistort
- 2025.1.9
- RapidTable now supports the Unitable model, Evaluation data has been added.
- 2025.3.30
- Align input and output formats with RapidTable
- support automatic model downloading
- introduce a new table classification model from PaddleOCR.
- sup rapidocr2
💖 This repository serves as an inference library for structured recognition of tables within documents, including models for wired and wireless table recognition from Alibaba DulaLight, a wired table model from llaipython (WeChat), and a built-in table classification model from NetEase Qanything.
Quick Start Model Evaluation Char Rec Usage Recommendations Document Distortion Correction Table Rotation & Perspective Correction Input Parameters Frequently Asked Questions Update Plan
⚡ Fast: Uses ONNXRuntime as the inference engine, achieving 1-7 seconds per image on CPU.
🎯 Accurate: Combines a table type classification model to distinguish between wired and wireless tables, providing more refined tasks and higher accuracy.
🛡️ Stable: Does not depend on any third-party training frameworks; relies only on essential base libraries, avoiding package conflicts.
TableRecognitionMetric Evaluation Tool
huggingface Dataset
modelscope Dataset
Rapid OCR
Test Environment: Ubuntu 20.04, Python 3.10.10, opencv-python 4.10.0.84
Note: StructEqTable outputs in LaTeX format.测评仅选取成功转换为 HTML and stripped of style tags.
Surya-Tabled uses its built-in OCR module, which is a row-column recognition model and cannot identify cell merges, resulting in lower scores.
Method | TEDS | TEDS-only-structure |
---|---|---|
surya-tabled(--skip-detect) | 0.33437 | 0.65865 |
surya-tabled | 0.33940 | 0.67103 |
deepdoctection(table-transformer) | 0.59975 | 0.69918 |
ppstructure_table_master | 0.61606 | 0.73892 |
ppsturcture_table_engine | 0.67924 | 0.78653 |
StructEqTable | 0.67310 | 0.81210 |
RapidTable(SLANet) | 0.71654 | 0.81067 |
table_cls + wired_table_rec v1 + lineless_table_rec | 0.75288 | 0.82574 |
table_cls + wired_table_rec v2 + lineless_table_rec | 0.77676 | 0.84580 |
PaddleX(SLANetXt+RT-DERT) | 0.79900 | 0.92222 |
RapidTable(SLANet-plus) | 0.84481 | 0.91369 |
RapidTable(unitable) | 0.86200 | 0.91813 |
wired_table_rec_v2 (highest precision for wired tables): General scenes for wired tables (papers, magazines, journals, receipts, invoices, bills)
paddlex-SLANet-plus (highest overall precision): Document scene tables (tables in papers, magazines, and journals)
pip install wired_table_rec lineless_table_rec table_cls
pip install rapidocr
⚠️ :wired_table_rec/table_cls
>=1.2.0lineless_table_rec
> 0.1.0 ,the input and output format are same with
RapidTable`
from pathlib import Path
from wired_table_rec.utils.utils import VisTable
from table_cls import TableCls
from wired_table_rec.main import WiredTableInput, WiredTableRecognition
from lineless_table_rec.main import LinelessTableInput, LinelessTableRecognition
from rapidocr import RapidOCR
if __name__ == "__main__":
# Init
wired_input = WiredTableInput()
lineless_input = LinelessTableInput()
wired_engine = WiredTableRecognition(wired_input)
lineless_engine = LinelessTableRecognition(lineless_input)
viser = VisTable()
# 默认小yolo模型(0.1s),可切换为精度更高yolox(0.25s),更快的qanything(0.07s)模型或paddle模型(0.03s)
table_cls = TableCls()
img_path = f"tests/test_files/table.jpg"
cls, elasp = table_cls(img_path)
if cls == "wired":
table_engine = wired_engine
else:
table_engine = lineless_engine
# 使用RapidOCR输入
ocr_engine = RapidOCR()
rapid_ocr_output = ocr_engine(img_path, return_word_box=True)
ocr_result = list(
zip(rapid_ocr_output.boxes, rapid_ocr_output.txts, rapid_ocr_output.scores)
)
table_results = table_engine(
img_path, ocr_result=ocr_result
)
# 使用单字识别
# word_results = rapid_ocr_output.word_results
# ocr_result = [
# [word_result[2], word_result[0], word_result[1]] for word_result in word_results
# ]
# table_results = table_engine(
# img_path, ocr_result=ocr_result, enhance_box_line=False
# )
# Save
#save_dir = Path("outputs")
#save_dir.mkdir(parents=True, exist_ok=True)
#save_html_path = f"outputs/{Path(img_path).stem}.html"
#save_drawed_path = f"outputs/{Path(img_path).stem}_table_vis{Path(img_path).suffix}"
#save_logic_path = (
# f"outputs/{Path(img_path).stem}_table_vis_logic{Path(img_path).suffix}"
#)
# Visualize table rec result
#vis_imged = viser(
# img_path, table_results, save_html_path, save_drawed_path, save_logic_path
#)
# Convert single character boxes to the same structure as line recognition
from rapidocr import RapidOCR
img_path = "tests/test_files/wired/table4.jpg"
ocr_engine = RapidOCR()
rapid_ocr_output = ocr_engine(img_path, return_word_box=True)
word_results = rapid_ocr_output.word_results
ocr_result = [
[word_result[2], word_result[0], word_result[1]] for word_result in word_results
]
import cv2
img_path = f'tests/test_files/wired/squeeze_error.jpeg'
from wired_table_rec.utils import ImageOrientationCorrector
img_orientation_corrector = ImageOrientationCorrector()
img = cv2.imread(img_path)
img = img_orientation_corrector(img)
cv2.imwrite(f'img_rotated.jpg', img)
For GPU or higher precision scenarios, please refer to the RapidTableDet project.
pip install rapid-table-det
import os
import cv2
from rapid_table_det.utils import img_loader, visuallize, extract_table_img
from rapid_table_det.inference import TableDetector
table_det = TableDetector()
img_path = f"tests/test_files/chip.jpg"
result, elapse = table_det(img_path)
img = img_loader(img_path)
extract_img = img.copy()
#There may be multiple tables
for i, res in enumerate(result):
box = res["box"]
lt, rt, rb, lb = res["lt"], res["rt"], res["rb"], res["lb"]
# Recognition box and top-left corner position
img = visuallize(img, box, lt, rt, rb, lb)
# Perspective transformation to extract table image
wrapped_img = extract_table_img(extract_img.copy(), lt, rt, rb, lb)
# cv2.imwrite(f"{out_dir}/{file_name}-extract-{i}.jpg", wrapped_img)
# cv2.imwrite(f"{out_dir}/{file_name}-visualize.jpg", img)
@dataclass
class WiredTableInput:
model_type: Optional[str] = "unet" #unet/cycle_center_net
model_path: Union[str, Path, None, Dict[str, str]] = None
use_cuda: bool = False
device: str = "cpu"
@dataclass
class LinelessTableInput:
model_type: Optional[str] = "lore" #lore
model_path: Union[str, Path, None, Dict[str, str]] = None
use_cuda: bool = False
device: str = "cpu"
@dataclass
class WiredTableOutput:
pred_html: Optional[str] = None
cell_bboxes: Optional[np.ndarray] = None
logic_points: Optional[np.ndarray] = None
elapse: Optional[float] = None
@dataclass
class LinelessTableOutput:
pred_html: Optional[str] = None
cell_bboxes: Optional[np.ndarray] = None
logic_points: Optional[np.ndarray] = None
elapse: Optional[float] = None
wired_table_rec = WiredTableRecognition()
html, elasp, polygons, logic_points, ocr_res = wired_table_rec(
img, # Image Union[str, np.ndarray, bytes, Path, PIL.Image.Image]
ocr_result, # Input rapidOCR recognition result, use internal rapidocr model by default if not provided
enhance_box_line=True, # Enhance box line find (turn off to avoid excessive cutting, turn on to reduce missed cuts), default is True
need_ocr=True, # Whether to perform OCR recognition, default is True
rec_again=True, # Whether to re-recognize table boxes without detected text by cropping them separately, default is True
)
lineless_table_rec = LinelessTableRecognition()
html, elasp, polygons, logic_points, ocr_res = lineless_table_rec(
img, # Image Union[str, np.ndarray, bytes, Path, PIL.Image.Image]
ocr_result, # Input rapidOCR recognition result, use internal rapidocr model by default if not provided
need_ocr=True, # Whether to perform OCR recognition, default is True
rec_again=True, # Whether to re-recognize table boxes without detected text by cropping them separately, default is True
)
- Q: The recognition box lost internal text information
- **A: The default small RapidOCR model is used. If you need higher precision, you can download a higher precision OCR model from the model list and pass it in during execution, or try adjusting the parameters of RapidOCR according to the online demo, modelscope huggingface
- Q: Does the model support GPU acceleration?
- **A: Currently, the inference of the table model is very fast, with wired tables at the 100ms level and wireless tables at the 500ms level. The main time consumption is in the OCR stage. You can refer to rapidocr_paddle to accelerate the OCR recognition process.
- Add methods for correcting small-angle image offsets
- Increase dataset size and add more evaluation comparisons
- Add complex scene table detection and extraction to solve low recognition rates caused by rotation and perspective
- Optimize the table classifier
- Optimize the wireless table model
flowchart TD
A[/table image/] --> B([table cls table_cls])
B --> C([wired_table_rec]) & D([lineless_table_rec]) --> E([rapidocr])
E --> F[/html output/]
Damo Academy - Table Structure Recognition - Wired Table
Damo Academy - Table Structure Recognition - Wireless Table
Special thanks to llaipython (WeChat, providing a full suite of high-precision table extraction services) for providing the high-precision wired table model.
Special thanks to MajexH for completing the table recognition test using deepdoctection (rag-flow).
Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.
Please ensure appropriate updates to tests.
If you want to sponsor this project, you can directly click the Sponsor button at the top of the current page. Please write a note (Your Github account name) to facilitate adding to the sponsor list.
This project is licensed under the Apache 2.0 open source license.