-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbackdoor_injection_main.py
621 lines (516 loc) · 22.6 KB
/
backdoor_injection_main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
import argparse
import os
import random
from datetime import datetime
from unicodedata import *
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from utils.config_parser import ConfigParser
from diffusers import StableDiffusionPipeline
from typing import List
import ptp_utils
import warnings
from tqdm import tqdm
from transformers import CLIPTextModel
import numpy as np
import abc
from diffusers import DPMSolverMultistepScheduler
# from torch.cuda.amp import autocast, GradScaler
warnings.filterwarnings("ignore")
LOW_RESOURCE = True
NUM_DIFFUSION_STEPS = 50
GUIDANCE_SCALE = 7.5
MAX_NUM_WORDS = 77
device = torch.device('cuda:0') if torch.cuda.is_available() else torch.device('cpu')
device_map = {
'add_embedding': 0,
'decoder': 0,
'encoder': 0,
'concept_embeds': 0,
'concept_embeds_weights': 0,
'special_care_embeds_weights': 0,
'vision_model': 0,
'visual_projection': 0,
'conv_in': 0,
'conv_out': 0,
'post_quant_conv': 0,
'special_care_embeds': 0,
'text_model': 0,
'conv_norm_out': 0,
'quant_conv': 0,
'time_embedding': 0,
'text_projection': 0,
'up_blocks': 1,
'mid_block': 1,
'down_blocks': 1,
}
ldm_stable = StableDiffusionPipeline.from_pretrained("./Models/stable-diffusion-v1-4/",device_map=device_map)
ldm_stable.scheduler = DPMSolverMultistepScheduler.from_config(ldm_stable.scheduler.config)
tokenizer = ldm_stable.tokenizer
LORA_USE = False
class AttentionControl(abc.ABC):
def step_callback(self, x_t):
return x_t
def between_steps(self):
return
@property
def num_uncond_att_layers(self):
return self.num_att_layers if LOW_RESOURCE else 0
@abc.abstractmethod
def forward (self, attn, is_cross: bool, place_in_unet: str):
raise NotImplementedError
def __call__(self, attn, is_cross: bool, place_in_unet: str):
if self.cur_att_layer >= self.num_uncond_att_layers:
if LOW_RESOURCE:
attn = self.forward(attn, is_cross, place_in_unet)
else:
h = attn.shape[0] # 16
attn[h // 2:] = self.forward(attn[h // 2:].clone(), is_cross, place_in_unet)
self.cur_att_layer += 1
if self.cur_att_layer == self.num_att_layers + self.num_uncond_att_layers:
self.cur_att_layer = 0
self.cur_step += 1
self.between_steps()
return attn
def reset(self):
self.cur_step = 0
self.cur_att_layer = 0
def __init__(self):
self.cur_step = 0
self.num_att_layers = -1
self.cur_att_layer = 0
class AttentionStore(AttentionControl):
@staticmethod
def get_empty_store():
return {"down_cross": [], "mid_cross": [], "up_cross": [],
"down_self": [], "mid_self": [], "up_self": []}
def forward(self, attn, is_cross: bool, place_in_unet: str):
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= 32 ** 2: # avoid memory overhead
self.step_store[key].append(attn)
# attn = attn.to("cpu")
# self.step_store[key].append(attn)
# attn = attn.to("cuda:0")
return attn
def between_steps(self):
if len(self.attention_store) == 0:
self.attention_store = self.step_store
else:
for key in self.attention_store:
for i in range(len(self.attention_store[key])):
self.attention_store[key][i] += self.step_store[key][i]
self.step_store = self.get_empty_store()
def get_average_attention(self):
average_attention = {key: [item / self.cur_step for item in self.attention_store[key]] for key in self.attention_store}
return average_attention
def reset(self):
super(AttentionStore, self).reset()
self.step_store = self.get_empty_store()
self.attention_store = {}
def __init__(self):
super(AttentionStore, self).__init__()
self.step_store = self.get_empty_store()
self.attention_store = {}
def aggregate_attention(attention_store: AttentionStore, res: int, from_where: List[str], is_cross: bool, select: int, prompt: List[str]):
out = []
attention_maps = attention_store.get_average_attention()
num_pixels = res ** 2
for location in from_where:
for item in attention_maps[f"{location}_{'cross' if is_cross else 'self'}"]:
if item.shape[1] == num_pixels:
cross_maps = item.reshape(len(prompt), -1, res, res, item.shape[-1])[select]
out.append(cross_maps)
out = torch.cat(out, dim=0)
out_new = out.sum(0) / out.shape[0]
return out_new
def preprocess(attention_store: AttentionStore, res: int, from_where: List[str], prompt: List[str], select: int = 0):
tokens = tokenizer.encode(prompt[select])
attention_maps = aggregate_attention(attention_store, res, from_where, True, select, prompt)
attention_maps = attention_maps[:,:,:-1].clone().permute(2,0,1)
return attention_maps,len(tokens)
def set_seed(seed: int = 42) -> None:
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
# # When running on the CuDNN backend, two further options must be set
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Set a fixed value for the hash seed
os.environ["PYTHONHASHSEED"] = str(seed)
g_cpu = torch.Generator().manual_seed(int(seed))
return g_cpu
def cov_m(features_tensor):
'''Riemann logarithmic mapping'''
features_tensor = features_tensor.flatten(start_dim=1)
# compute the mean of the features
mean_features = torch.mean(features_tensor, dim=0)
# center the features
centered_matrix = features_tensor.clone() - mean_features
# compute the covariance matrix
cov_matrix = torch.matmul(centered_matrix.t(), centered_matrix) / (centered_matrix.shape[0] - 1)
return cov_matrix
class MMD_loss(nn.Module):
def __init__(self, kernel_type='rbf', kernel_mul=2.0, kernel_num=5):
super(MMD_loss, self).__init__()
self.kernel_num = kernel_num
self.kernel_mul = kernel_mul
self.fix_sigma = None
self.kernel_type = kernel_type
def guassian_kernel(self, source, target, kernel_mul=2.0, kernel_num=5, fix_sigma=None):
n_samples = int(source.size()[0]) + int(target.size()[0])
total = torch.cat([source, target], dim=0)
total0 = total.unsqueeze(0).expand(
int(total.size(0)), int(total.size(0)), int(total.size(1)))
total1 = total.unsqueeze(1).expand(
int(total.size(0)), int(total.size(0)), int(total.size(1)))
L2_distance = ((total0-total1)**2).sum(2)
if fix_sigma:
bandwidth = fix_sigma
else:
bandwidth = torch.sum(L2_distance.data) / (n_samples**2-n_samples)
bandwidth = bandwidth / (kernel_mul ** (kernel_num // 2))
bandwidth_list = [bandwidth * (kernel_mul**i)
for i in range(kernel_num)]
kernel_val = [torch.exp(-L2_distance / bandwidth_temp)
for bandwidth_temp in bandwidth_list]
return sum(kernel_val)
def linear_mmd2(self, f_of_X, f_of_Y):
loss = 0.0
delta = f_of_X.float().mean(0) - f_of_Y.float().mean(0)
loss = delta.dot(delta.T)
return loss
def forward(self, source, target):
if self.kernel_type == 'linear':
return self.linear_mmd2(source, target)
elif self.kernel_type == 'rbf':
batch_size = int(source.size()[0])
kernels = self.guassian_kernel(
source, target, kernel_mul=self.kernel_mul, kernel_num=self.kernel_num, fix_sigma=self.fix_sigma)
XX = torch.mean(kernels[:batch_size, :batch_size])
YY = torch.mean(kernels[batch_size:, batch_size:])
XY = torch.mean(kernels[:batch_size, batch_size:])
YX = torch.mean(kernels[batch_size:, :batch_size])
loss = torch.mean(XX + YY - XY - YX)
return loss
class TextModifier:
def __init__(self, text):
self.text = text
self.words_file = './text.txt'
self.load_words()
def load_words(self):
"""Load words from the file into the words list"""
with open(self.words_file, 'r', encoding='utf-8') as file:
self.words = [line.strip() for line in file if line.strip()]
def insert_words(self):
"""Insert 1 to 5 random words from the file into the text at a random position"""
if not self.words:
print("Words file is empty or not loaded.")
return
num_words = random.randint(1, 5) # Random number of words to insert
words_to_insert = random.sample(self.words, num_words)
position = random.randint(0, len(self.text.split()))
words = self.text.split()
words[position:position] = words_to_insert
self.text = ' '.join(words)
def delete_random_word(self):
"""Randomly delete a word from the text"""
words = self.text.split()
if words:
word_to_delete = random.choice(words)
words.remove(word_to_delete)
self.text = ' '.join(words)
def shuffle_text(self):
"""Shuffle the order of words in the text"""
words = self.text.split()
random.shuffle(words)
self.text = ' '.join(words)
def replace_word(self):
"""Randomly replace a word in the text with a random word from the file"""
if not self.words:
print("Words file is empty or not loaded.")
return
words = self.text.split()
if words:
index = random.randint(0, len(words) - 1)
replacement_word = random.choice(self.words)
words[index] = replacement_word
self.text = ' '.join(words)
def append_words(self):
"""Append 1 to 5 random words from the file to the end of the text"""
if not self.words:
print("Words file is empty or not loaded.")
return
num_words = random.randint(1, 5) # Random number of words to append
words_to_append = random.sample(self.words, min(num_words, len(self.words)))
self.text += ' ' + ' '.join(words_to_append)
def transform_text(self):
"""Randomly select an operation and apply it"""
operations = [self.insert_words, self.delete_random_word, self.shuffle_text,
self.replace_word, self.append_words]
operation = random.choice(operations)
operation()
def main():
g_cpu = set_seed(42)
# define and parse arguments
config, args = create_parser()
torch.manual_seed(config.seed)
torch.set_num_threads(config.training['num_threads'])
rtpt = config.create_rtpt()
rtpt.start()
# load dataset
dataset_name = args.train_dataset
with open(dataset_name, 'r') as file:
dataset = [line.strip() for line in file]
dataloader = DataLoader(dataset,
batch_size=config.clean_batch_size,
shuffle=True)
# check for trigger overlappings
print('######## Injected Backdoors ########')
# load models
if args.pretrained:
path = args.pretrained_model_path
encoder = CLIPTextModel.from_pretrained(path)
ldm_stable.text_encoder = encoder.to(device)
tokenizer = ldm_stable.tokenizer
encoder_teacher = CLIPTextModel.from_pretrained(path).to(device)
encoder_student = CLIPTextModel.from_pretrained(path).to(device)
else:
tokenizer = ldm_stable.tokenizer
encoder_teacher = CLIPTextModel.from_pretrained("./Models/stable-diffusion-v1-4/text_encoder/").to(device)
encoder_student = CLIPTextModel.from_pretrained("./Models/stable-diffusion-v1-4/text_encoder/").to(device)
# freeze teacher model
for param in encoder_teacher.parameters():
param.requires_grad = False
# define optimizer
optimizer = config.create_optimizer(encoder_student)
lr_scheduler = config.create_lr_scheduler(optimizer)
# fefine loss function
loss_fkt = config.loss_fkt
# prepare training
num_clean_samples = 0
num_backdoored_samples = 0
step = -1
encoder_student.train()
encoder_teacher.eval()
dataloader_iter = iter(dataloader)
save_path = os.path.join(
config.training['save_path'],
datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
os.makedirs(save_path, exist_ok=True)
# training loop
while (True):
step += 1
# stop if max num of steps reached
if step >= config.num_steps:
break
# get next clean batch without trigger characters
batch_clean = []
while len(batch_clean) < config.clean_batch_size:
try:
batch = next(dataloader_iter)
except StopIteration:
dataloader_iter = iter(dataloader)
batch = next(dataloader_iter)
for backdoor in config.backdoors:
batch2 = []
for sample in batch:
if backdoor['trigger'] not in sample:
modifier = TextModifier(sample)
modifier.transform_text()
clean_text = modifier.text
batch2.append(clean_text)
batch_clean += batch2
batch_clean = batch_clean[:config.clean_batch_size]
# compute utility loss
num_clean_samples += len(batch_clean)
text_input = tokenizer(batch_clean,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt")
embedding_student = encoder_student(text_input.input_ids.to(device))[0]
with torch.no_grad():
embedding_teacher = encoder_teacher(
text_input.input_ids.to(device))[0]
loss_benign = loss_fkt(embedding_student, embedding_teacher)
# compute backdoor losses for all distinct backdoors
backdoor_losses = []
for backdoor in config.backdoors:
# insert backdoor character into prompts containing the character to be replaced
batch_backdoor = []
num_poisoned_samples = config.injection[
'poisoned_samples_per_step']
while len(batch_backdoor) < num_poisoned_samples:
try:
batch = next(dataloader_iter)
except StopIteration:
dataloader_iter = iter(dataloader)
batch = next(dataloader_iter)
if config.injection['trigger_count']:
if backdoor['trigger'] == ' ':
samples = [
sample for sample in batch
if backdoor['replaced_character'] in sample
]
else:
samples = [
sample for sample in batch
if backdoor['replaced_character'] in sample
]
else:
if backdoor['trigger'] == ' ':
samples = [
sample for sample in batch
if backdoor['replaced_character'] in sample
]
else:
samples = [
sample for sample in batch
]
batch_backdoor += samples
batch_backdoor = batch_backdoor[:num_poisoned_samples]
# compute backdoor loss
if config.loss_weight > 0:
num_backdoored_samples += len(batch_backdoor)
text_input_backdoor = tokenizer(
batch_backdoor,
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt")
text_input_target = tokenizer(
[backdoor['target_prompt']],
padding="max_length",
max_length=tokenizer.model_max_length,
truncation=True,
return_tensors="pt")
embedding_student_backdoor = encoder_student(
text_input_backdoor.input_ids.to(device))[0]
with torch.no_grad():
embedding_teacher_target = encoder_teacher(
text_input_target.input_ids.to(device))[0]
embedding_teacher_target = torch.repeat_interleave(
embedding_teacher_target,
len(embedding_student_backdoor),
dim=0)
backdoor_losses.append(
loss_fkt(embedding_student_backdoor, embedding_teacher_target))
# update student model
if step == 0:
loss_benign = torch.tensor(0.0).to(device)
loss_backdoor = torch.tensor(0.0).to(device)
for bd_loss in backdoor_losses:
loss_backdoor += bd_loss
# =========================== adapative attack ===========================
uncond_input = tokenizer(
[""], padding="max_length", max_length=77, return_tensors="pt"
)
uncond_embeddings = encoder_student(uncond_input.input_ids.to(device))[0]
mmd_loss = MMD_loss(kernel_type='rbf', kernel_mul=3.0, kernel_num=5)
target_features = []
backdoor_features = []
# student
for num in tqdm(range(len(batch_backdoor))):
prompt = batch_backdoor[num]
text = [prompt]
controller = AttentionStore()
text_input = text_input_backdoor.input_ids[num, :]
embedding = embedding_student_backdoor[num,:,:].unsqueeze(0)
ptp_utils.text2image_ldm_stable_v4(
ldm_stable, text_input, embedding, uncond_embeddings, 1, controller,
latent=None, num_inference_steps=NUM_DIFFUSION_STEPS,
guidance_scale=GUIDANCE_SCALE, generator=g_cpu,
low_resource=LOW_RESOURCE, lora=LORA_USE)
images_student_backdoor, _ = preprocess(controller, res=16, from_where=("up", "down"), prompt=text)
input_student_backdoor = cov_m(images_student_backdoor)
backdoor_features.append(input_student_backdoor)
backdoor_distribution = torch.cat(backdoor_features, dim=0).to(device)
# target
with torch.no_grad():
for prompt in tqdm(batch_clean):
ldm_stable.text_encoder = encoder_teacher
controller = AttentionStore()
controller.reset()
text = [prompt]
controller = AttentionStore()
ptp_utils.text2image_ldm_stable_v3(ldm_stable, text, controller,
latent=None, num_inference_steps=NUM_DIFFUSION_STEPS,
guidance_scale=GUIDANCE_SCALE, generator=g_cpu, low_resource=LOW_RESOURCE,lora=LORA_USE)
images_teacher_target,_ = preprocess(controller, res=16, from_where=("up", "down"), prompt=text)
input_teacher_target = cov_m(images_teacher_target)
target_features.append(input_teacher_target)
target_distribution = torch.cat(target_features, dim=0).to(device)
# compute mmd loss
loss_reg = mmd_loss(backdoor_distribution, target_distribution)
# =========================== adapative attack ===========================
loss = loss_benign + loss_backdoor + args.lambda_value*loss_reg
optimizer.zero_grad()
loss.backward()
optimizer.step()
# log results
loss_benign = loss_benign.detach().cpu().item()
loss_backdoor = loss_backdoor.detach().cpu().item()
loss_total = loss.detach().cpu().item()
loss_reg = 0.1*loss_reg.detach().cpu().item()
print(
f'Step {step}: Benign Loss: {loss_benign:.4f} \t Backdoor Loss: {loss_backdoor:.4f} \t Reg Loss: {loss_reg:.4f} \t Total Loss: {loss_total:.4f}'
)
# update rtpt and lr scheduler
rtpt.step()
if lr_scheduler:
lr_scheduler.step()
if (step+1) % 20 == 0:
path = os.path.join(save_path,str(step))
encoder_student.save_pretrained(f'{path}')
path = os.path.join(save_path,'lambda.txt')
with open(path,'w') as fin:
fin.write(str(args.lambda_value)+'\n')
def create_parser():
parser = argparse.ArgumentParser(description='Integrating backdoor')
parser.add_argument('-c',
'--config',
default='./configs/backdoor_invisible/backdoor_1.yaml',
type=str,
dest="config",
help='Config .json file path (default: None)')
parser.add_argument('-p',
'--pretrained',
default=False,
type=bool,
dest="pretrained",
help='Whether to use pre-trained model (default: False)')
parser.add_argument('-e',
'--epoch',
default=299,
type=int,
dest="epoch",
help='Epoch of pre-trained model (default: 299)')
parser.add_argument('-b',
'--backdoor_model',
default='backdoor_1',
type=str,
dest="backdoor_model",
help='Backdoor model name (default: backdoor_1)')
parser.add_argument('-l',
'--lambda_value',
default=1e-1,
type=float,
help='the coefficient of regularization term (default:1e-1)')
parser.add_argument('-t',
'--train_dataset',
required=True,
type=str,
help='path of train dataset')
parser.add_argument('-pp',
'--pretrained_model_path',
required=False,
default=None,
type=str,
help='path of pretrained model')
args = parser.parse_args()
config = ConfigParser(args.config)
return config, args
if __name__ == '__main__':
main()