-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist_ddp.py
222 lines (187 loc) · 8.45 KB
/
mnist_ddp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#########################################################################
# Reference: https://blog.csdn.net/u010900574/article/details/122780585 #
#########################################################################
import argparse
import os
import time
import torch
import torch.distributed as dist
import torch.nn.functional as F
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR
from torchvision import datasets, transforms
from net import Net
def init_distributed_mode(args):
"""
Initialize DDP
"""
os.environ['OMP_NUM_THREADS'] = "1"
if "RANK" in os.environ and "WORLD_SIZE" in os.environ:
args.rank = int(os.environ["RANK"])
args.world_size = int(os.environ["WORLD_SIZE"])
args.gpu = int(os.environ["LOCAL_RANK"])
elif "SLURM_PROCID" in os.environ:
args.rank = int(os.environ["SLURM_PROCID"])
args.gpu = args.rank % torch.cuda.device_count()
elif hasattr(args, "rank"):
pass
else:
print("Not using distributed mode")
args.distributed = False
return
args.distributed = True
torch.cuda.set_device(args.gpu)
args.dist_backend = "nccl"
print(
f"| distributed init (rank {args.rank}): {args.dist_url}, local rank:{args.gpu}, world size:{args.world_size}",
flush=True)
dist.init_process_group(
backend=args.dist_backend, init_method=args.dist_url, world_size=args.world_size, rank=args.rank
)
def train(args, model, device, train_loader, optimizer, epoch):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
if args.distributed:
if dist.get_rank() == 0:
if batch_idx % args.log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
dist.get_world_size() * batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
else:
if batch_idx % args.log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
if args.dry_run:
break
def test(model, device, test_loader):
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input batch size for training (default: 64)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--epochs', type=int, default=14, metavar='N',
help='number of epochs to train (default: 14)')
parser.add_argument('--lr', type=float, default=1.0, metavar='LR',
help='learning rate (default: 1.0)')
parser.add_argument('--gamma', type=float, default=0.7, metavar='M',
help='Learning rate step gamma (default: 0.7)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
parser.add_argument('--local_rank', type=int, help='local rank, will passed by ddp')
parser.add_argument("--world-size", default=1, type=int, help="number of distributed processes")
parser.add_argument("--dist-url", default="env://", type=str, help="url used to set up distributed training")
args = parser.parse_args()
use_cuda = not args.no_cuda and torch.cuda.is_available()
init_distributed_mode(args)
torch.manual_seed(args.seed)
device = torch.device("cuda" if use_cuda else "cpu")
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
if use_cuda:
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
if args.distributed:
if torch.distributed.get_rank() != 0:
# might be downloading mnist data, let rank 0 download first
torch.distributed.barrier()
train_dataset = datasets.MNIST('./data', train=True, download=True, transform=transform)
if args.distributed:
if torch.distributed.get_rank() == 0:
# mnist data is downloaded, indicate other ranks can proceed
torch.distributed.barrier()
val_dataset = datasets.MNIST('./data', train=False, transform=transform)
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True)
else:
train_sampler = torch.utils.data.RandomSampler(train_dataset)
test_sampler = torch.utils.data.SequentialSampler(val_dataset)
train_loader = torch.utils.data.DataLoader(train_dataset, sampler=train_sampler, **train_kwargs)
test_loader = torch.utils.data.DataLoader(val_dataset, sampler=test_sampler, **test_kwargs)
model = Net().to(device)
model_without_ddp = model
if args.distributed:
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
model_without_ddp = model.module
optimizer = optim.Adadelta(model.parameters(), lr=args.lr)
scheduler = StepLR(optimizer, step_size=1, gamma=args.gamma)
total_time = 0.
for epoch in range(1, args.epochs + 1):
if args.distributed:
train_sampler.set_epoch(epoch)
start = time.time()
train(args, model, device, train_loader, optimizer, epoch)
total_time += time.time() - start
if args.distributed:
# Only run validation on GPU 0 process, for simplicity, so we do not run validation on multi gpu.
if dist.get_rank() == 0:
test(model_without_ddp, device, test_loader)
torch.distributed.barrier()
else:
torch.distributed.barrier()
else:
test(model, device, test_loader)
scheduler.step()
if args.save_model:
if args.distributed:
if dist.get_rank() == 0:
# only save model on GPU0 process.
torch.save(model.state_dict(), f"mnist_cnn.pt")
else:
torch.save(model.state_dict(), f"mnist_cnn_.pt")
if args.distributed:
return dist.get_rank(), total_time
else:
return 0, total_time
if __name__ == '__main__':
rk, tt = main()
print(f'[{rk}] Total time elapsed: {tt} seconds')