-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmnist_ds.py
123 lines (98 loc) · 4.58 KB
/
mnist_ds.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
import argparse
import time
import deepspeed
import torch
import torch.nn.functional as F
from deepspeed import comm as dist
from torchvision import datasets, transforms
from net import Net
deepspeed.init_distributed()
def train(args, model, train_loader, epoch):
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(model.local_rank), target.to(model.local_rank)
output = model(data)
loss = F.nll_loss(output, target)
model.backward(loss)
model.step()
if dist.get_rank() == 0:
if batch_idx % args.log_interval == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, dist.get_world_size() * batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.item()))
if args.dry_run:
break
def test(model, device, test_loader):
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
if dist.get_rank() == 0:
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
def main():
# Training settings
parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
# Train
parser.add_argument('--batch_size', default=64, type=int,
help='mini-batch size (default:64)')
parser.add_argument('--dry-run', action='store_true', default=False,
help='quickly check a single pass')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
help='input batch size for testing (default: 1000)')
parser.add_argument('--log-interval', type=int, default=10, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--epochs', default=14, type=int,
help='number of total epochs (default: 14)')
parser.add_argument('--local_rank', type=int, default=-1,
help='local rank passed from distributed launcher')
parser.add_argument('--save-model', action='store_true', default=False,
help='For Saving the current Model')
# Include DeepSpeed configuration arguments
parser = deepspeed.add_config_arguments(parser)
args = parser.parse_args()
device = torch.device("cuda")
torch.manual_seed(args.seed)
train_kwargs = {'batch_size': args.batch_size}
test_kwargs = {'batch_size': args.test_batch_size}
cuda_kwargs = {'num_workers': 1,
'pin_memory': True,
'shuffle': True}
train_kwargs.update(cuda_kwargs)
test_kwargs.update(cuda_kwargs)
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
if dist.get_rank() != 0:
# might be downloading mnist data, let rank 0 download first
dist.barrier()
dataset1 = datasets.MNIST('./data', train=True, download=True, transform=transform)
if dist.get_rank() == 0:
# mnist data is downloaded, indicate other ranks can proceed
dist.barrier()
dataset2 = datasets.MNIST('./data', train=False, transform=transform)
test_loader = torch.utils.data.DataLoader(dataset2, **test_kwargs)
net = Net().to(device)
parameters = filter(lambda p: p.requires_grad, net.parameters())
model, optimizer, train_loader, _ = deepspeed.initialize(
args=args, model=net, model_parameters=parameters, training_data=dataset1)
total_time = 0.
for epoch in range(1, args.epochs + 1):
start = time.time()
train(args, model, train_loader, epoch)
total_time += time.time() - start
test(net, device, test_loader)
if args.save_model:
torch.save(model.state_dict(), "mnist_cnn.pt")
return total_time
if __name__ == '__main__':
print(f'[{dist.get_rank()}] Total time elapsed: {main()} seconds')