-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocess_data.py
394 lines (341 loc) · 13.9 KB
/
process_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
# coding:utf-8
import numpy as np
import pywt
from sklearn import preprocessing
WINDOW_SIZE = 16
TYPE_LEN = {
'acc': 3,
'gyr': 3,
'emg': 8
}
'''
提取一个手势的一个batch的某一信号种类的全部数据
数据形式保存不变 只改变数值和每次采集ndarray的长度
(特征提取会改变数据的数量)
'''
# data process func for online
def feature_extract(data_set, type_name, for_cnn):
"""
特征提取 并进行必要的归一化
acc gyr数据的三种特征量纲相差不大 且有某些维度全局的值都很相近的情况
于是暂时去除归一化的操作 拟对只对数据变化较大,且变化范围较大于1的数据维度进行部分归一化
emg数据照常进行各种处理
:param data_set: 来自Load_From_File过程的返回值 一个dict
包含一个手语 三种采集数据类型的 多次采集过程的数据
:param type_name: 数据采集的类型 决定nparray的长度
:param for_cnn: 是否是为cnn模型进行特征提取 需要进行不一样的操作
:return: 一个dict 包含这个数据采集类型的原始数据,3种特征提取后的数据,特征拼接后的特征向量
仍保持多次采集的数据的np.array放在一个list中
返回的数据的dict包含所有的数据 但是只有有效的字段有数据
"""
global normalize_scale_collect
normalize_scale_collect = []
global standardize_scale_collect
standardize_scale_collect = []
if type_name == 'emg':
return __emg_feature_extract(data_set, for_cnn)
data_set_rms_feat = None
data_set_zc_feat = None
data_set_arc_feat = None
data_set_polyfit_feat = [] # for cnn 使用多项式对间隔间的数据进行拟合 减少中间数据点
data_set_appended_feat = []
data_set = data_set[type_name]
for raw_data in data_set:
if not for_cnn:
# 一般的特征提取过程
seg_ARC_feat, seg_RMS_feat, seg_ZC_feat, seg_polyfit_data, seg_all_feat \
= feature_extract_single(raw_data, type_name)
if data_set_arc_feat is None:
data_set_arc_feat = [seg_ARC_feat]
else:
data_set_arc_feat.append(seg_ARC_feat)
if data_set_rms_feat is None:
data_set_rms_feat = [seg_RMS_feat]
else:
data_set_rms_feat.append(seg_RMS_feat)
if data_set_zc_feat is None:
data_set_zc_feat = [seg_ZC_feat]
else:
data_set_zc_feat.append(seg_ZC_feat)
data_set_polyfit_feat.append(seg_polyfit_data)
else:
# cnn的特征提取过程 只使用曲线拟合特征
seg_polyfit_feat = feature_extract_single_polyfit(raw_data, 2)
data_set_polyfit_feat.append(seg_polyfit_feat)
seg_all_feat = seg_polyfit_feat
data_set_appended_feat.append(seg_all_feat)
return {
'type_name': type_name,
'raw': data_set,
'arc': data_set_arc_feat,
'rms': data_set_rms_feat,
'zc': data_set_zc_feat,
'poly_fit': data_set_polyfit_feat,
'append_all': data_set_appended_feat
}
def feature_extract_single_polyfit(data, compress):
seg_poly_fit = None
start_ptr = 0
end_ptr = 16
while end_ptr <= len(data):
window_data = data[start_ptr:end_ptr, :]
window_extract_data = None
x = np.arange(0, 16, 1)
y = window_data
# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# 0 2 4 6 8 10 11 14
poly_args = np.polyfit(x, y, 3)
for each_channel in range(3):
dots_in_channel = None
window_poly = np.poly1d(poly_args[:, each_channel])
for dot in np.arange(0, 16, compress):
# assemble each dot's each channel
if dots_in_channel is None:
dots_in_channel = window_poly(dot)
else:
dots_in_channel = np.vstack((dots_in_channel, window_poly(dot)))
# assemble each window's each channel data
if window_extract_data is None:
window_extract_data = dots_in_channel
else:
window_extract_data = np.hstack((window_extract_data, dots_in_channel))
# assemble each window data
if seg_poly_fit is None:
seg_poly_fit = window_extract_data
else:
seg_poly_fit = np.vstack((seg_poly_fit, window_extract_data))
start_ptr += 16
end_ptr += 16
return seg_poly_fit
def feature_extract_single(data, type_name):
# todo 先进行曲线拟合处理
# 对曲线拟合后的数据进行特征提取 效果更好
data = feature_extract_single_polyfit(data, 1)
window_amount = len(data) / WINDOW_SIZE
# windows_data = data.reshape(window_amount, WINDOW_SIZE, TYPE_LEN[type_name])
windows_data = np.vsplit(data, window_amount)
win_index = 0
is_first = True
seg_all_feat = []
for Win_Data in windows_data:
# 依次处理每个window的数据
win_RMS_feat = np.sqrt(np.mean(np.square(Win_Data), axis=0))
Win_Data1 = np.vstack((Win_Data[1:, :], np.zeros((1, TYPE_LEN[type_name]))))
win_ZC_feat = np.sum(np.sign(-np.sign(Win_Data) * np.sign(Win_Data1) + 1), axis=0) - 1
win_ARC_feat = np.apply_along_axis(ARC, 0, Win_Data)
# 将每个window特征提取的数据用vstack叠起来
win_index += 1
# 将三种特征拼接成一个长向量
# 层叠 遍历展开
Seg_Feat = np.vstack((win_RMS_feat, win_ZC_feat, win_ARC_feat))
All_Seg_Feat = Seg_Feat.ravel()
# (x_rms, y_rms, z_rms, x_zc, y_zc, z_zc, x_a, y_a, z_a, x_b, y_b, y_c, z_a, z_b, z_c)
if is_first:
is_first = False
seg_all_feat = All_Seg_Feat
else:
seg_all_feat = np.vstack((seg_all_feat, All_Seg_Feat))
seg_all_feat = normalize(seg_all_feat)
# seg_all_feat = np.abs(seg_all_feat)
seg_RMS_feat = seg_all_feat[:, 0:3]
seg_ZC_feat = seg_all_feat[:, 3:6]
seg_ARC_feat = seg_all_feat[:, 6:]
# try:
# seg_ARC_feat = np.hsplit(seg_ARC_feat, 4)
# except ValueError:
# print(seg_ARC_feat)
# seg_ARC_feat = np.vstack(tuple(seg_ARC_feat))
return seg_ARC_feat, seg_RMS_feat, seg_ZC_feat, data, seg_all_feat
def ARC(Win_Data):
Len_Data = len(Win_Data)
# AR_coefficient = []
AR_coefficient = np.polyfit(range(Len_Data), Win_Data, 3)
return AR_coefficient
def append_feature_vector(data_set):
"""
拼接三种数据采集类型的特征数据成一个大向量
:param data_set: 第一维存储三种采集类型数据集的list
第二维是这个类型数据三种特征拼接后 每次采集获得的数据矩阵
:return:
"""
batch_list = []
# 每种采集类型下有多个数据
for i in range(len(data_set[0])):
# 取出每个采集类型的数据列中的每个数据进行拼接
batch_mat = append_single_data_feature(acc_data=data_set[0][i],
gyr_data=data_set[1][i],
emg_data=data_set[2][i], )
batch_list.append(batch_mat)
return batch_list
def append_single_data_feature(acc_data, gyr_data, emg_data):
batch_mat = np.zeros(len(acc_data))
is_first = True
for each_window in range(len(acc_data)):
# 针对每个识别window
# 把这一次采集的三种数据采集类型进行拼接
line = np.append(acc_data[each_window], gyr_data[each_window])
line = np.append(line, emg_data[each_window])
if is_first:
is_first = False
batch_mat = line
else:
batch_mat = np.vstack((batch_mat, line))
return batch_mat
# emg data_process
def emg_feature_extract(data_set, for_cnn):
return __emg_feature_extract(data_set, for_cnn)['trans']
def __emg_feature_extract(data_set, for_cnn):
"""
特征提取
:param data_set: 来自Load_From_File过程的返回值 一个dict
包含一个手语 三种采集数据类型的 多次采集过程的数据
:return: 一个dict 包含这个数据采集类型的原始数据,3种特征提取后的数据,特征拼接后的特征向量
仍保持多次采集的数据放在一起
"""
if for_cnn:
data_set = [each[16:144, :] for each in data_set['emg']]
else:
data_set = data_set['emg']
data_trans = emg_wave_trans(data_set)
if for_cnn:
data_trans = expand_emg_data(data_trans)
return {
'type_name': 'emg',
'raw': data_set,
'trans': data_trans,
'append_all': data_trans,
}
def wavelet_trans(data):
data = np.array(data).T # 转换为 通道 - 时序
data = pywt.threshold(data, 25, mode='hard') # 阈值滤波
try:
data = pywt.wavedec(data, wavelet='db3', level=5) # 小波变换
except ValueError:
data = pywt.wavedec(data, wavelet='db2', level=5)
data = np.vstack((data[0].T, np.zeros(8))).T
# 转换为 时序-通道 追加一个零点在转换回 通道-时序
data = pywt.threshold(data, 20, mode='hard') # 再次阈值滤波
data = data.T
data = normalize(data) # 转换为 时序-通道 以时序轴 对每个通道进行normalize
data = eliminate_zero_shift(data) # 消除零点漂移
data = np.abs(data) # 反转
return data # 转换为 时序-通道 便于rnn输入
def emg_wave_trans(data_set):
res_list = []
for each_cap in data_set:
cap = wavelet_trans(each_cap)
res_list.append(cap)
return res_list
def eliminate_zero_shift(data):
zero_point = []
for each_chanel in range(len(data[0])):
count_dic = {}
for each_cap in range(len(data)):
if count_dic.get(data[each_cap][each_chanel]) is None:
count_dic[data[each_cap][each_chanel]] = 1
else:
count_dic[data[each_cap][each_chanel]] += 1
max_occr = 0
value = 0
for each_value in count_dic.keys():
if max_occr < count_dic[each_value]:
max_occr = count_dic[each_value]
value = each_value
if max_occr > 1:
zero_point.append(value)
else:
zero_point.append(0)
zero_point = np.array(zero_point)
data -= zero_point
return data
def expand_emg_data(data):
expnded = []
for each_data in data:
each_data_expand = expand_emg_data_single(each_data)
expnded.append(np.array(each_data_expand))
return expnded
def expand_emg_data_single(data):
expanded_data = None
for each_dot in range(len(data)):
if each_dot % 2 != 0:
continue # 只对偶数点进行左右扩展
if each_dot - 1 < 0:
left_val = data[each_dot]
else:
left_val = data[each_dot - 1]
if each_dot + 1 >= len(data):
right_val = data[each_dot]
else:
right_val = data[each_dot + 1]
center_val = data[each_dot]
x = np.arange(0, 2, 1)
y = np.array([left_val, center_val])
left_line_args = np.polyfit(x, y, 1)
y = np.array([center_val, right_val])
right_line_args = np.polyfit(x, y, 1)
dot_expanded_data = None
for each_channel in range(8):
each_channel_dot_expanded = None
poly_left = np.poly1d(left_line_args[:, each_channel])
for dot in np.arange(0, 1, 1 / 8):
if each_channel_dot_expanded is None:
each_channel_dot_expanded = np.array(poly_left(dot))
else:
each_channel_dot_expanded = np.vstack((each_channel_dot_expanded, poly_left(dot)))
poly_right = np.poly1d(right_line_args[:, each_channel])
for dot in np.arange(0, 1, 1 / 8):
if each_channel_dot_expanded is None:
each_channel_dot_expanded = np.array(poly_right(dot))
else:
each_channel_dot_expanded = np.vstack((each_channel_dot_expanded, poly_right(dot)))
if dot_expanded_data is None:
dot_expanded_data = each_channel_dot_expanded
else:
dot_expanded_data = np.hstack((dot_expanded_data, each_channel_dot_expanded))
if expanded_data is None:
expanded_data = dot_expanded_data
else:
expanded_data = np.vstack((expanded_data, dot_expanded_data))
# data padding
# expanded_data = np.vstack((expanded_data[0,:], expanded_data))
# expanded_data = np.vstack((expanded_data, expanded_data[-1,:]))
return expanded_data
# data scaling
normalize_scaler = preprocessing.MinMaxScaler()
normalize_scale_collect = []
def normalize(data):
normalize_scaler.fit(data)
scale_adjust()
data = normalize_scaler.transform(data)
# 记录每次的scale情况
curr_scale = [each for each in normalize_scaler.scale_]
normalize_scale_collect.append(curr_scale)
return data
def scale_adjust():
"""
根据scale的情况判断是否需要进行scale
scale的大小是由这个数据的max - min的得出 如果相差不大 就不进行scale
通过修改scale和min的值使其失去scale的作用
note: scale 的大小是max - min 的倒数
"""
curr_scale = normalize_scaler.scale_
curr_min = normalize_scaler.min_
for each_val in range(len(curr_scale)):
if curr_scale[each_val] > 1:
curr_scale[each_val] = 1
curr_min[each_val] = 0
# if abs(curr_min[each_val]) < 50:
# curr_min[each_val] = 0
def get_feat_norm_scales():
# 0 ARC 1 RMS 2 ZC 3 ALL
feat_name = ['arc', 'rms', 'zc', 'all']
scales = {
'arc': [],
'rms': [],
'zc': [],
'all': [],
}
for each in normalize_scale_collect:
feat_no = normalize_scale_collect.index(each) % 4
scales[feat_name[feat_no]].append(each)
return scales