-
-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathutils.jl
374 lines (315 loc) · 11.5 KB
/
utils.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
"""
has_constant_lags(integrator::DDEIntegrator)
Return if the DDE problem of the `integrator` contains constant delays.
"""
has_constant_lags(integrator::DDEIntegrator) = has_constant_lags(integrator.sol.prob)
"""
has_dependent_lags(integrator::DDEIntegrator)
Return if the DDE problem of the `integrator` contains dependent delays.
"""
has_dependent_lags(integrator::DDEIntegrator) = has_dependent_lags(integrator.sol.prob)
"""
has_constant_lags(prob::DDEProblem)
Return if the DDE problem `prob` contains constant delays.
"""
function has_constant_lags(prob::DDEProblem)
prob.constant_lags !== nothing && !isempty(prob.constant_lags)
end
"""
has_dependent_lags(prob::DDEProblem)
Return if the DDE problem `prob` contains dependent delays.
"""
function has_dependent_lags(prob::DDEProblem)
prob.dependent_lags !== nothing && !isempty(prob.dependent_lags)
end
"""
u_uprev(u0, alg; kwargs...)
Return state vectors `u` and `uprev` (possibly aliased) for solving the
differential equation problem for initial state `u0` with algorithm `alg`.
"""
function u_uprev(u0, alg;
alias_u0 = false,
adaptive = DiffEqBase.isadaptive(alg),
calck = false)
if alias_u0
u = u0
else
u = recursivecopy(u0)
end
# Some algorithms do not use `uprev` explicitly. In that case, we can save
# some memory by aliasing `uprev = u`, e.g. for "2N" low storage methods.
if OrdinaryDiffEqCore.uses_uprev(alg, adaptive) || calck
uprev = recursivecopy(u)
else
uprev = u
end
u, uprev
end
"""
u_uprev_uprev2(u0, alg; kwargs...)
Return state vectors `u`, `uprev`, and `uprev2` (possibly aliased) for solving the
differential equation problem for initial state `u0` with algorithm `alg`.
"""
function u_uprev_uprev2(u0, alg;
allow_extrapolation = alg_extrapolates(alg),
kwargs...)
# compute u and uprev first
u, uprev = u_uprev(u0, alg; kwargs...)
if allow_extrapolation
uprev2 = recursivecopy(u)
else
uprev2 = uprev
end
u, uprev, uprev2
end
"""
get_abstol(u, tspan, alg; abstol = nothing)
Return the absolute tolerance for solving the differential equation problem with state
variable `u` and time span `tspan` with algorithm `alg`.
"""
function get_abstol(u, tspan, alg; abstol = nothing)
if alg isa FunctionMap
_abstol = real.(zero.(u))
elseif abstol === nothing
uBottomEltype = recursive_bottom_eltype(u)
uBottomEltypeNoUnits = recursive_unitless_bottom_eltype(u)
if uBottomEltypeNoUnits == uBottomEltype
_abstol = real(convert(uBottomEltype, oneunit(uBottomEltype) * 1 // 10^6))
else
_abstol = real.(oneunit.(u) .* 1 // 10^6)
end
else
_abstol = real.(abstol)
end
_abstol
end
"""
get_reltol(u, tspan, alg; reltol = nothing)
Return the relative tolerance for solving the differential equation problem with state
variable `u` and time span `tspan` with algorithm `alg`.
"""
function get_reltol(u, tspan, alg; reltol = nothing)
if alg isa FunctionMap
_reltol = real.(zero(first(u) / t))
elseif reltol === nothing
uBottomEltype = recursive_bottom_eltype(u)
uBottomEltypeNoUnits = recursive_unitless_bottom_eltype(u)
if uBottomEltypeNoUnits == uBottomEltype
_reltol = real(convert(uBottomEltype, oneunit(uBottomEltype) * 1 // 10^3))
else
_reltol = real.(oneunit.(u) .* 1 // 10^3)
end
else
_reltol = real.(reltol)
end
_reltol
end
"""
callback_set_and_cache(prob, callback)
Return set of callbacks and its cache for the differential equation problem `prob` and the
user-provided `callback`.
"""
function callback_set_and_cache(prob, callback)
callback_set = CallbackSet(callback)
max_len_cb = DiffEqBase.max_vector_callback_length(callback_set)
if max_len_cb isa VectorContinuousCallback
uBottomEltype = recursive_bottom_eltype(prob.u0)
callback_cache = DiffEqBase.CallbackCache(max_len_cb.len, uBottomEltype,
uBottomEltype)
else
callback_cache = nothing
end
callback_set, callback_cache
end
"""
rate_prototype_of(u0, tspan)
Return prototype of rates for a given differential equation problem with state `u` and
time span `tspan`.
"""
rate_prototype_of(u0, tspan) = DiffEqBase.@.. u0 * $(inv(oneunit(eltype(tspan))))
"""
solution_arrays(u, tspan, rate_prototype; kwargs...)
Return arrays of saved time points, states, and rates, initialized with the solution at the
first time point if `save_start = true` (the default).
"""
function solution_arrays(u, tspan, rate_prototype;
timeseries_init,
ts_init,
ks_init,
save_idxs,
save_start)
# determine types of time and state
uType = typeof(u)
tType = eltype(tspan)
# initialize vector of saved time points
ts = ts_init === () ? tType[] : convert(Vector{tType}, ts_init)
# initialize vector of saved states
if save_idxs === nothing
timeseries = timeseries_init === () ? uType[] :
convert(Vector{uType}, timeseries_init)
else
u_initial = u[save_idxs]
timeseries = timeseries_init === () ? typeof(u_initial)[] :
convert(Vector{typeof(u_initial)}, timeseries_init)
end
# initialize vector of saved rates
if save_idxs === nothing
ksEltype = Vector{typeof(rate_prototype)}
else
ks_prototype = rate_prototype[save_idxs]
ksEltype = Vector{typeof(ks_prototype)}
end
ks = ks_init === () ? ksEltype[] : convert(Vector{ksEltype}, ks_init)
# save solution at initial time point
if save_start
copyat_or_push!(ts, 1, first(tspan))
if save_idxs === nothing
copyat_or_push!(timeseries, 1, u)
copyat_or_push!(ks, 1, [rate_prototype])
else
u_initial = u[save_idxs]
copyat_or_push!(timeseries, 1, u_initial, Val{false})
copyat_or_push!(ks, 1, [ks_prototype])
end
end
ts, timeseries, ks
end
"""
sizehint!(sol::DESolution, n)
Suggest that solution `sol` reserves capacity for at least `n` elements.
"""
function Base.sizehint!(sol::DESolution, n)
sizehint!(sol.u, n)
sizehint!(sol.t, n)
sizehint!(sol.k, n)
nothing
end
"""
sizehint!(sol::DESolution, alg, tspan, tstops, saveat; kwargs...)
Suggest that solution `sol` reserves capacity for a number of elements that
depends on the parameter settings of the numerical solver.
"""
function Base.sizehint!(sol::DESolution, alg, tspan, tstops, saveat;
save_everystep, adaptive, internalnorm, dt, dtmin)
# obtain integration time
t0 = first(tspan)
integrationtime = last(tspan) - t0
if !adaptive && save_everystep && !isinf(integrationtime)
# determine number of steps if known a priori
if iszero(dt)
steps = length(tstops)
else
abs(dt) < dtmin && throw(ArgumentError("Supplied dt is smaller than dtmin"))
steps = ceil(Int, internalnorm(integrationtime / dt, t0))
end
sizehint!(sol, steps + 1)
elseif save_everystep
sizehint!(sol, 50)
elseif !isempty(saveat)
sizehint!(sol, length(saveat) + 1)
else
sizehint!(sol, 2)
end
nothing
end
function build_history_function(prob, alg, rate_prototype, reltol, differential_vars;
dt, dtmin, adaptive, calck, internalnorm)
@unpack f, u0, tspan, p = prob
t0 = first(tspan)
tType = eltype(tspan)
tTypeNoUnits = typeof(one(tType))
tdir = sign(last(tspan) - t0)
uEltypeNoUnits = recursive_unitless_eltype(u0)
uBottomEltypeNoUnits = recursive_unitless_bottom_eltype(u0)
# bootstrap an ODE integrator
# - whose solution captures the dense history of the simulation
# - that is used for extrapolation of the history for time points past the
# already fixed history
# - that is used for interpolation of the history for time points in the
# current integration step (so the interpolation is fixed while updating the stages)
# we wrap the user-provided history function such that function calls during the setup
# of the integrator do not fail
ode_f = ODEFunctionWrapper(f, prob.h)
ode_prob = ODEProblem{isinplace(prob)}(ode_f, u0, tspan, p)
# get states of ODE integrator (do not alias uprev)
ode_u, ode_uprev = u_uprev(u0, alg; alias_u0 = false, calck = true)
# initialize output arrays
ode_k = typeof(rate_prototype)[]
ode_ts, ode_timeseries, ode_ks = solution_arrays(ode_u, tspan, rate_prototype;
timeseries_init = (),
ts_init = (),
ks_init = (),
save_idxs = nothing,
save_start = true)
# obtain cache (we alias uprev2 and uprev)
ode_cache = OrdinaryDiffEqCore.alg_cache(alg.alg, ode_u, rate_prototype, uEltypeNoUnits,
uBottomEltypeNoUnits, tTypeNoUnits, ode_uprev,
ode_uprev, ode_f, t0, zero(tType), reltol, p,
calck,
Val(isinplace(prob)))
# build dense interpolation of history
ode_alg_choice = iscomposite(alg) ? Int[] : nothing
ode_id = OrdinaryDiffEqCore.InterpolationData(ode_f, ode_timeseries, ode_ts,
ode_ks,
ode_alg_choice, true, ode_cache,
differential_vars, false)
ode_sol = DiffEqBase.build_solution(ode_prob, alg.alg, ode_ts, ode_timeseries;
dense = true, k = ode_ks, interp = ode_id,
alg_choice = ode_alg_choice,
calculate_error = false,
stats = DiffEqBase.Stats(0))
# reserve capacity
sizehint!(ode_sol, alg.alg, tspan, (), ();
save_everystep = true, adaptive = adaptive, internalnorm = internalnorm,
dt = dt, dtmin = dtmin)
# create simple integrator
tdirType = typeof(sign(zero(tType)))
ode_integrator = HistoryODEIntegrator{
typeof(alg.alg), isinplace(prob), typeof(prob.u0),
tType, tdirType, typeof(ode_k),
typeof(ode_sol), typeof(ode_cache),
typeof(differential_vars)}(ode_sol,
ode_u, ode_k,
t0,
zero(tType),
ode_uprev,
t0, alg.alg,
zero(tType),
tdir, 1, 1,
ode_cache,
differential_vars)
# combine the user-provided history function and the ODE integrator with dense solution
# to a joint dense history of the DDE
# we use this history information to create a problem function of the DDE with all
# available history information that is of the form f(du,u,p,t) or f(u,p,t) such that
# ODE algorithms can be applied
HistoryFunction(prob.h, ode_integrator)
end
"""
initialize_solution!(integrator::DDEIntegrator)
Initialize the solution of an integrator by adjusting the cache for composite algorithms.
"""
function initialize_solution!(integrator::DDEIntegrator)
if iscomposite(integrator.alg)
copyat_or_push!(integrator.integrator.sol.alg_choice, 1, integrator.cache.current)
if integrator.opts.save_start
copyat_or_push!(integrator.sol.alg_choice, 1, integrator.cache.current)
end
end
nothing
end
function unwrap_alg(integrator::DDEIntegrator, is_stiff)
alg = integrator.alg
iscomp = alg isa CompositeAlgorithm
if !iscomp
return alg
elseif alg.choice_function isa AutoSwitch
num = is_stiff ? 2 : 1
return alg.algs[num]
else
return alg.algs[integrator.cache.current]
end
end
function OrdinaryDiffEqNonlinearSolve.nlsolve_f(integrator::DDEIntegrator)
OrdinaryDiffEqNonlinearSolve.nlsolve_f(integrator.f, unwrap_alg(integrator, true))
end