-
-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathrootfind_tests.jl
183 lines (162 loc) · 7.08 KB
/
rootfind_tests.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
@testsnippet RootfindTestSnippet begin
using StaticArrays, Random, LinearAlgebra, ForwardDiff, NonlinearSolveBase, SciMLBase
using ADTypes, PolyesterForwardDiff, Enzyme, ReverseDiff
import TaylorDiff
quadratic_f(u, p) = u .* u .- p
quadratic_f!(du, u, p) = (du .= u .* u .- p)
function newton_fails(u, p)
return 0.010000000000000002 .+
10.000000000000002 ./ (1 .+
(0.21640425613334457 .+
216.40425613334457 ./ (1 .+
(0.21640425613334457 .+
216.40425613334457 ./ (1 .+ 0.0006250000000000001(u .^ 2.0))) .^ 2.0)) .^
2.0) .- 0.0011552453009332421u .- p
end
const TERMINATION_CONDITIONS = [
NormTerminationMode(Base.Fix1(maximum, abs)),
RelTerminationMode(),
RelNormTerminationMode(Base.Fix1(maximum, abs)),
RelNormSafeTerminationMode(Base.Fix1(maximum, abs)),
RelNormSafeBestTerminationMode(Base.Fix1(maximum, abs)),
AbsTerminationMode(),
AbsNormTerminationMode(Base.Fix1(maximum, abs)),
AbsNormSafeTerminationMode(Base.Fix1(maximum, abs)),
AbsNormSafeBestTerminationMode(Base.Fix1(maximum, abs))
]
function run_nlsolve_oop(f::F, u0, p = 2.0; solver) where {F}
return solve(NonlinearProblem{false}(f, u0, p), solver; abstol = 1e-9)
end
function run_nlsolve_iip(f!::F, u0, p = 2.0; solver) where {F}
return solve(NonlinearProblem{true}(f!, u0, p), solver; abstol = 1e-9)
end
end
@testitem "First Order Methods" setup=[RootfindTestSnippet] tags=[:core] begin
for alg in (
SimpleNewtonRaphson,
SimpleTrustRegion,
(; kwargs...) -> SimpleTrustRegion(; kwargs..., nlsolve_update_rule = Val(true))
)
@testset for autodiff in (
AutoForwardDiff(),
AutoFiniteDiff(),
AutoReverseDiff(),
AutoEnzyme(),
nothing
)
@testset "[OOP] u0: $(typeof(u0))" for u0 in (
[1.0, 1.0], @SVector[1.0, 1.0], 1.0)
sol = run_nlsolve_oop(quadratic_f, u0; solver = alg(; autodiff))
@test SciMLBase.successful_retcode(sol)
@test maximum(abs, quadratic_f(sol.u, 2.0)) < 1e-9
end
@testset "[IIP] u0: $(typeof(u0))" for u0 in ([1.0, 1.0],)
sol = run_nlsolve_iip(quadratic_f!, u0; solver = alg(; autodiff))
@test SciMLBase.successful_retcode(sol)
@test maximum(abs, quadratic_f(sol.u, 2.0)) < 1e-9
end
@testset "Termination Condition: $(nameof(typeof(termination_condition))) u0: $(nameof(typeof(u0)))" for termination_condition in TERMINATION_CONDITIONS,
u0 in (1.0, [1.0, 1.0], @SVector[1.0, 1.0])
probN = NonlinearProblem(quadratic_f, u0, 2.0)
@test all(solve(
probN, alg(; autodiff = AutoForwardDiff()); termination_condition).u .≈
sqrt(2.0))
end
end
end
end
@testitem "Second Order Methods" setup=[RootfindTestSnippet] tags=[:core] begin
@testset for alg in (
SimpleHalley,
)
@testset for autodiff in (
AutoForwardDiff(),
AutoFiniteDiff(),
AutoReverseDiff(),
AutoTaylorDiff(),
nothing
)
@testset "[OOP] u0: $(typeof(u0))" for u0 in (
[1.0, 1.0], @SVector[1.0, 1.0], 1.0)
sol = run_nlsolve_oop(
quadratic_f, u0; solver = alg(; autodiff))
@test SciMLBase.successful_retcode(sol)
@test maximum(abs, quadratic_f(sol.u, 2.0)) < 1e-9
end
end
@testset "Termination Condition: $(nameof(typeof(termination_condition))) u0: $(nameof(typeof(u0)))" for termination_condition in TERMINATION_CONDITIONS,
u0 in (1.0, [1.0, 1.0], @SVector[1.0, 1.0])
probN = NonlinearProblem(quadratic_f, u0, 2.0)
@test all(solve(
probN, alg(; autodiff = AutoTaylorDiff());
termination_condition).u .≈
sqrt(2.0))
end
end
end
@testitem "Higher Order Methods" setup=[RootfindTestSnippet] tags=[:core] begin
@testset for alg in (
SimpleHouseholder,
)
@testset for order in (1, 2, 3, 4)
@testset "[OOP] u0: $(typeof(u0))" for u0 in (
[1.0], @SVector[1.0], 1.0)
sol = run_nlsolve_oop(quadratic_f, u0; solver = alg{order}())
@test SciMLBase.successful_retcode(sol)
@test maximum(abs, quadratic_f(sol.u, 2.0)) < 1e-9
end
end
@testset "Termination Condition: $(nameof(typeof(termination_condition))) u0: $(nameof(typeof(u0)))" for termination_condition in TERMINATION_CONDITIONS,
u0 in (1.0, [1.0], @SVector[1.0])
probN = NonlinearProblem(quadratic_f, u0, 2.0)
@test all(solve(
probN, alg{2}(); termination_condition).u .≈
sqrt(2.0))
end
end
end
@testitem "Derivative Free Methods" setup=[RootfindTestSnippet] tags=[:core] begin
@testset "$(nameof(typeof(alg)))" for alg in (
SimpleBroyden(),
SimpleKlement(),
SimpleDFSane(),
SimpleLimitedMemoryBroyden(),
SimpleBroyden(; linesearch = Val(true)),
SimpleLimitedMemoryBroyden(; linesearch = Val(true))
)
@testset "[OOP] u0: $(typeof(u0))" for u0 in ([1.0, 1.0], @SVector[1.0, 1.0], 1.0)
sol = run_nlsolve_oop(quadratic_f, u0; solver = alg)
@test SciMLBase.successful_retcode(sol)
@test maximum(abs, quadratic_f(sol.u, 2.0)) < 1e-9
end
@testset "[IIP] u0: $(typeof(u0))" for u0 in ([1.0, 1.0],)
sol = run_nlsolve_iip(quadratic_f!, u0; solver = alg)
@test SciMLBase.successful_retcode(sol)
@test maximum(abs, quadratic_f(sol.u, 2.0)) < 1e-9
end
@testset "Termination Condition: $(nameof(typeof(termination_condition))) u0: $(nameof(typeof(u0)))" for termination_condition in TERMINATION_CONDITIONS,
u0 in (1.0, [1.0, 1.0], @SVector[1.0, 1.0])
probN = NonlinearProblem(quadratic_f, u0, 2.0)
@test all(solve(probN, alg; termination_condition).u .≈ sqrt(2.0))
end
end
end
@testitem "Newton Fails" setup=[RootfindTestSnippet] tags=[:core] begin
u0 = [-10.0, -1.0, 1.0, 2.0, 3.0, 4.0, 10.0]
p = [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]
@testset "$(nameof(typeof(alg)))" for alg in (
SimpleDFSane(),
SimpleTrustRegion(),
SimpleHalley(),
SimpleTrustRegion(; nlsolve_update_rule = Val(true))
)
sol = run_nlsolve_oop(newton_fails, u0, p; solver = alg)
@test SciMLBase.successful_retcode(sol)
@test maximum(abs, newton_fails(sol.u, p)) < 1e-9
end
end
@testitem "Kwargs Propagation" setup=[RootfindTestSnippet] tags=[:core] begin
prob = NonlinearProblem(quadratic_f, ones(4), 2.0; maxiters = 2)
sol = solve(prob, SimpleNewtonRaphson())
@test sol.retcode === ReturnCode.MaxIters
end