-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtest.py
169 lines (147 loc) · 6.25 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import os
import argparse
import torch
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model.loss as module_loss
import model.metric as module_metric
import model.model as module_arch
from train import get_instance
from torchvision.utils import make_grid, save_image
from PIL import Image
from scipy.misc import imresize
import numpy as np
import torch.nn.functional as F
import cv2
import time
from utils.visualization import decode_segmap
def main(config, args):
# output_path = os.path.join(os.getcwd(), 'output-human')
current_dir = os.getcwd()
output_path = os.path.join(current_dir, 'output-concat')
try:
os.stat(output_path)
except:
os.mkdir(output_path)
# test_list_file = args.testList
# test_list = []
# test_dir = os.path.split(test_list_file)[0]
# test_dir = os.path.join(test_dir, 'pic')
# with open(test_list_file, 'r') as f:
# test_list = f.readlines()
# setup data_loader instances
data_loader = getattr(module_data, config['adobe_data_loader']['type'])(
"/public/Datasets/DIM-dataset/",
batch_size=1,
shuffle=False,
validation_split=0.0,
training=False,
num_workers=1
)
#f = open(images)
## build model architecture
model = get_instance(module_arch, 'arch', config)
model.summary()
# get function handles of loss and metrics
# loss_fn = getattr(module_loss, config['loss'])
# metric_fns = [getattr(module_metric, met) for met in ["mse", "sad"]]
# load state dict
checkpoint = torch.load(args.resume)
state_dict = checkpoint['state_dict']
if config['n_gpu'] > 1:
model = torch.nn.DataParallel(model)
model.load_state_dict(state_dict)
# prepare model for testing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
model.eval()
# total_loss = 0.0
# total_metrics = torch.zeros(len(metric_fns))
with torch.no_grad():
for i, sample_batched in enumerate(data_loader):
# for item in test_list:
# name_ = item.strip()
# img_path = os.path.join(test_dir, name_)
#img_path = sample.strip().split(' ')[0]
#name_ = os.path.basename(img_path)
name_ = os.path.basename(sample_batched['name'][0])
output_file_path = os.path.join(output_path, name_)
# img = Image.open(img_path)
# original_size = (img.height, img.width)
# img_scale1 = torch.from_numpy(
# np.transpose(imresize(img, (320, 320)), (2,0,1)) / 255.
# ).type(torch.FloatTensor).unsqueeze(0)
# img_scale1 = img_scale1.to(device)
# img_scale2 = F.interpolate(img_scale1.clone(), scale_factor=0.5)
# img_scale3 = F.interpolate(img_scale1.clone(), scale_factor=0.25)
img_scale1 = sample_batched['image'].to(device)
img_scale2 = F.interpolate(img_scale1.clone(), scale_factor=0.5)
img_scale3 = F.interpolate(img_scale1.clone(), scale_factor=0.25)
original_size = sample_batched['size']
# gt = sample_batched['gt'].to(device)
t0 = time.time()
output = model(img_scale1, img_scale2, img_scale3)
print(time.time() - t0)
# pred = output.data.max(1)[1].cpu().numpy()
# decoded = decode_segmap(pred, 3)
# decoded = np.transpose(decoded[0], (1,2,0))
# decoded = cv2.resize(decoded, (original_size[1], original_size[0]),\
# interpolation=cv2.INTER_CUBIC)
# output_file_path = os.path.join(output_path, \
# os.path.basename(sample_batched['name'][0]))
alpha_pred = output[0,0,:,:].data.cpu().numpy()
# alpha_pred = np.where(
# alpha_pred < 0.1,
# 0.,
# alpha_pred
# )
# alpha_pred = np.where(
# alpha_pred > 0.9,
# 1.,
# alpha_pred
# )
alpha_pred = cv2.resize(alpha_pred, (original_size[1], original_size[0]),\
interpolation=cv2.INTER_CUBIC)
cv2.imwrite(output_file_path, alpha_pred*255.)
# alpha_pred = output[0,0,:,:].cpu().data.numpy()
#alpha_pred = np.where(
# alpha_pred < 0.15,
# 0.,
# alpha_pred
#)
#alpha_pred = np.where(
# alpha_pred > 0.95,
# 1.,
# alpha_pred
#)
# output_file_path = os.path.join(output_path, \
# os.path.basename(sample_batched['name'][0]))
# alpha_pred = cv2.resize(alpha_pred, (original_size[1], original_size[0]),\
# interpolation=cv2.INTER_CUBIC)
# cv2.imwrite(output_file_path, alpha_pred*255.)
# for i in range(len(img_scale1)):
# filename = os.path.join(output_path, os.path.basename(sample_batched['name'][i]))
# size_ = (original_size[1][i].item(), original_size[0][i].item())
# alpha_pred = output[i,0,:,:].cpu().data.numpy()
# alpha_pred = cv2.resize(alpha_pred, size_, interpolation=cv2.INTER_CUBIC)
# # alpha_pred = np.where(
# # alpha_pred < 0.1,
# # 0.,
# # alpha_pred)
# # alpha_pred = np.where(
# # alpha_pred > 0.95,
# # 1.,
# # alpha_pred
# # )
# cv2.imwrite(filename, alpha_pred*255.)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='PyTorch Template')
parser.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
parser.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
parser.add_argument('-t', '--testList', type=str, help='specify test dataset list.')
args = parser.parse_args()
if args.resume:
config = torch.load(args.resume)['config']
main(config, args)