-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDownload_SOI.py
92 lines (65 loc) · 2.64 KB
/
Download_SOI.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import pickle
import pandas as pd
import os
from subprocess import call, check_call, CalledProcessError
import threading
from pydub import AudioSegment
from subprocess import call, check_call, CalledProcessError
import threading
import os
from datetime import datetime
import tensorflow as tf
#Read all the data required
lab = pd.read_csv("data/audioset/class_labels_indices.csv")
un_df = pd.read_csv("data/audioset/unbalanced_train_segments.csv",quotechar='"', skipinitialspace=True, skiprows=2)
print(un_df)
#Specify the 'mid' from class_labels_indices.csv for your required sound of interest( SOI) [eg : '/m/09x0r' in case of 'Speech'] and name it with respective sound [eg : 'Speech' is its corresponding display_name ]
df=pd.DataFrame()
df=un_df.loc[un_df['positive_labels']=='<specify required mid>']
df['labels']='<corresponding display_name_SOI>'
df['YTID']=df['# YTID']
#Download your required number of examples
df=df.iloc[:300][:]
df.index=range(df.shape[0])
print(df.shape)
print(df.head())
def download_clip(YTID, start_seconds, end_seconds):
url = "https://www.youtube.com/watch?v=" + YTID
target_file = 'sounds/SOI/' + YTID + '-' + str(start_seconds) + '-' + str(end_seconds)+".wav"
# No need to download audio file that already has been downloaded
if os.path.isfile(target_file):
return
tmp_filename = 'sounds/tmp_clip_' + YTID + '-' + str(start_seconds) + '-' + str(end_seconds)
tmp_filename_w_extension = tmp_filename +'.wav'
try:
check_call(['youtube-dl', url, '--audio-format', 'wav', '-x', '-o', tmp_filename +'.%(ext)s'])
except CalledProcessError:
# do nothing
print "Exception CalledProcessError!"
return
try:
aud_seg = AudioSegment.from_wav(tmp_filename_w_extension)[start_seconds*1000:end_seconds*1000]
aud_seg.export(target_file, format="wav")
except:
print "Error while reading file!"
os.remove(tmp_filename_w_extension)
def download_data():
if not os.path.exists('sounds'):
os.makedirs('sounds')
if not os.path.exists('sounds/SOI'):
os.makedirs('sounds/SOI')
threads = []
for index in range(df.shape[0]):
row = df.iloc[index][:]
print "Downloading", str(index), "of", df.shape[0], ":", row.YTID
# download_clip(row.YTID, row.start_seconds, row.end_seconds)
t = threading.Thread(target=download_clip, args=(row.YTID, row.start_seconds, row.end_seconds))
threads.append(t)
t.start()
if len(threads) > 4:
threads[0].join()
threads = threads[1:]
for t in threads:
t.join()
if __name__ == "__main__":
download_data()