-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
123 lines (99 loc) · 4.25 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
from __future__ import print_function
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets, transforms
from torch.autograd import Variable
args={}
kwargs={}
args['batch_size']=1000
args['test_batch_size']=1000
args['epochs']=10 #The number of Epochs is the number of times you go through the full dataset.
args['lr']=0.01 #Learning rate is how fast it will decend.
args['momentum']=0.5 #SGD momentum (default: 0.5) Momentum is a moving average of our gradients (helps to keep direction).
args['seed']=1 #random seed
args['log_interval']=10
args['cuda']=False
#load the data
train_loader = torch.utils.data.DataLoader(
datasets.MNIST('/mnist/data', train=True, download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args['batch_size'], shuffle=True, **kwargs)
test_loader = torch.utils.data.DataLoader(
datasets.MNIST('/mnist/data', train=False, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])),
batch_size=args['test_batch_size'], shuffle=True, **kwargs)
class Net(nn.Module):
#This defines the structure of the NN.
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d() #Dropout
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 10)
def forward(self, x):
#Convolutional Layer/Pooling Layer/Activation
x = F.relu(F.max_pool2d(self.conv1(x), 2))
#Convolutional Layer/Dropout/Pooling Layer/Activation
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
#Fully Connected Layer/Activation
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
#Fully Connected Layer/Activation
x = self.fc2(x)
#Softmax gets probabilities.
return F.log_softmax(x, dim=1)
def train(epoch, model):
model.train()
for batch_idx, (data, target) in enumerate(train_loader):
if args['cuda']:
data, target = data.cuda(), target.cuda()
#Variables in Pytorch are differenciable.
data, target = Variable(data), Variable(target)
#This will zero out the gradients for this batch.
optimizer.zero_grad()
output = model(data)
# Calculate the loss The negative log likelihood loss. It is useful to train a classification problem with C classes.
loss = F.nll_loss(output, target)
#dloss/dx for every Variable
loss.backward()
#to do a one-step update on our parameter.
optimizer.step()
#Print out the loss periodically.
if batch_idx % args['log_interval'] == 0:
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.dataset),
100. * batch_idx / len(train_loader), loss.data.item()))
def test(model):
model.eval()
test_loss = 0
correct = 0
for data, target in test_loader:
if args['cuda']:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
test_loss += F.nll_loss(output, target, size_average=False).data.item() # sum up batch loss
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability
correct += pred.eq(target.data.view_as(pred)).long().cpu().sum()
test_loss /= len(test_loader.dataset)
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
model = Net()
if args['cuda']:
model.cuda()
optimizer = optim.SGD(model.parameters(), lr=args['lr'], momentum=args['momentum'])
for epoch in range(1, args['epochs'] + 1):
train(epoch, model)
test(model)
torch.save(model.state_dict(), "/mnist/vol/mnist_wt.pth")