A implementation of the NIPS 2016 paper : Matching Networks for One Shot Learning using pytorch. In the model, somethings, such as learning rates or regression, may differ from the original paper.
I posted the details of the code in Korean on my blog(will be soon.), so if you are interested, please visit!
한글로 논문과 코드에 대해 작성한 글이 있으니 관심있으신 분은 확인해보세요!
-
cd matching
-
python train.py -d omniglot -m protonet
3. #### Test
```bash
python eval.py
tensorboard --logdir=runs
All parameters are present in `arguments.py`. If you want to adjust the parameters, modify them and run the code.
### 📈Result
| Model | Reference Paper | This Repo |
| -------------------- | --------------- | --------- |
| Omniglot 5-w 1-s | | |
| Omniglot 5-w 5-s | | |
| Omniglot 20-w 1-s | | |
| Omniglot 20-w 1-s | | |
| miniImagenet 5-w 1-s | | |
| miniImagenet 5-w 5-s | | |
**Graph**
<p align="center">
<img src="asset\omniglot_result.png" height=320>
<img src="asset\mini_result.png" height=320>
</p>
### 📌Reference
* [Matching Networks for One Shot Learning](https://arxiv.org/pdf/1606.04080.pdf)