forked from scikit-learn/scikit-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_search.py
1046 lines (831 loc) · 39.4 KB
/
grid_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
The :mod:`sklearn.grid_search` includes utilities to fine-tune the parameters
of an estimator.
"""
from __future__ import print_function
# Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>,
# Gael Varoquaux <gael.varoquaux@normalesup.org>
# Andreas Mueller <amueller@ais.uni-bonn.de>
# Olivier Grisel <olivier.grisel@ensta.org>
# License: BSD 3 clause
from abc import ABCMeta, abstractmethod
from collections import Mapping, namedtuple, Sized
from functools import partial, reduce
from itertools import product
import operator
import warnings
import numpy as np
from .base import BaseEstimator, is_classifier, clone
from .base import MetaEstimatorMixin
from .cross_validation import check_cv
from .cross_validation import _fit_and_score
from .externals.joblib import Parallel, delayed
from .externals import six
from .utils import check_random_state
from .utils.random import sample_without_replacement
from .utils.validation import _num_samples, indexable
from .utils.metaestimators import if_delegate_has_method
from .metrics.scorer import check_scoring
__all__ = ['GridSearchCV', 'ParameterGrid', 'fit_grid_point',
'ParameterSampler', 'RandomizedSearchCV']
warnings.warn("This module was deprecated in version 0.18 in favor of the "
"model_selection module into which all the refactored classes "
"and functions are moved. This module will be removed in 0.20.",
DeprecationWarning)
class ParameterGrid(object):
"""Grid of parameters with a discrete number of values for each.
.. deprecated:: 0.18
This module will be removed in 0.20.
Use :class:`sklearn.model_selection.ParameterGrid` instead.
Can be used to iterate over parameter value combinations with the
Python built-in function iter.
Read more in the :ref:`User Guide <grid_search>`.
Parameters
----------
param_grid : dict of string to sequence, or sequence of such
The parameter grid to explore, as a dictionary mapping estimator
parameters to sequences of allowed values.
An empty dict signifies default parameters.
A sequence of dicts signifies a sequence of grids to search, and is
useful to avoid exploring parameter combinations that make no sense
or have no effect. See the examples below.
Examples
--------
>>> from sklearn.grid_search import ParameterGrid
>>> param_grid = {'a': [1, 2], 'b': [True, False]}
>>> list(ParameterGrid(param_grid)) == (
... [{'a': 1, 'b': True}, {'a': 1, 'b': False},
... {'a': 2, 'b': True}, {'a': 2, 'b': False}])
True
>>> grid = [{'kernel': ['linear']}, {'kernel': ['rbf'], 'gamma': [1, 10]}]
>>> list(ParameterGrid(grid)) == [{'kernel': 'linear'},
... {'kernel': 'rbf', 'gamma': 1},
... {'kernel': 'rbf', 'gamma': 10}]
True
>>> ParameterGrid(grid)[1] == {'kernel': 'rbf', 'gamma': 1}
True
See also
--------
:class:`GridSearchCV`:
uses ``ParameterGrid`` to perform a full parallelized parameter search.
"""
def __init__(self, param_grid):
if isinstance(param_grid, Mapping):
# wrap dictionary in a singleton list to support either dict
# or list of dicts
param_grid = [param_grid]
self.param_grid = param_grid
def __iter__(self):
"""Iterate over the points in the grid.
Returns
-------
params : iterator over dict of string to any
Yields dictionaries mapping each estimator parameter to one of its
allowed values.
"""
for p in self.param_grid:
# Always sort the keys of a dictionary, for reproducibility
items = sorted(p.items())
if not items:
yield {}
else:
keys, values = zip(*items)
for v in product(*values):
params = dict(zip(keys, v))
yield params
def __len__(self):
"""Number of points on the grid."""
# Product function that can handle iterables (np.product can't).
product = partial(reduce, operator.mul)
return sum(product(len(v) for v in p.values()) if p else 1
for p in self.param_grid)
def __getitem__(self, ind):
"""Get the parameters that would be ``ind``th in iteration
Parameters
----------
ind : int
The iteration index
Returns
-------
params : dict of string to any
Equal to list(self)[ind]
"""
# This is used to make discrete sampling without replacement memory
# efficient.
for sub_grid in self.param_grid:
# XXX: could memoize information used here
if not sub_grid:
if ind == 0:
return {}
else:
ind -= 1
continue
# Reverse so most frequent cycling parameter comes first
keys, values_lists = zip(*sorted(sub_grid.items())[::-1])
sizes = [len(v_list) for v_list in values_lists]
total = np.product(sizes)
if ind >= total:
# Try the next grid
ind -= total
else:
out = {}
for key, v_list, n in zip(keys, values_lists, sizes):
ind, offset = divmod(ind, n)
out[key] = v_list[offset]
return out
raise IndexError('ParameterGrid index out of range')
class ParameterSampler(object):
"""Generator on parameters sampled from given distributions.
.. deprecated:: 0.18
This module will be removed in 0.20.
Use :class:`sklearn.model_selection.ParameterSampler` instead.
Non-deterministic iterable over random candidate combinations for hyper-
parameter search. If all parameters are presented as a list,
sampling without replacement is performed. If at least one parameter
is given as a distribution, sampling with replacement is used.
It is highly recommended to use continuous distributions for continuous
parameters.
Note that as of SciPy 0.12, the ``scipy.stats.distributions`` do not accept
a custom RNG instance and always use the singleton RNG from
``numpy.random``. Hence setting ``random_state`` will not guarantee a
deterministic iteration whenever ``scipy.stats`` distributions are used to
define the parameter search space.
Read more in the :ref:`User Guide <grid_search>`.
Parameters
----------
param_distributions : dict
Dictionary where the keys are parameters and values
are distributions from which a parameter is to be sampled.
Distributions either have to provide a ``rvs`` function
to sample from them, or can be given as a list of values,
where a uniform distribution is assumed.
n_iter : integer
Number of parameter settings that are produced.
random_state : int, RandomState instance or None, optional (default=None)
Pseudo random number generator state used for random uniform sampling
from lists of possible values instead of scipy.stats distributions.
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
Returns
-------
params : dict of string to any
**Yields** dictionaries mapping each estimator parameter to
as sampled value.
Examples
--------
>>> from sklearn.grid_search import ParameterSampler
>>> from scipy.stats.distributions import expon
>>> import numpy as np
>>> np.random.seed(0)
>>> param_grid = {'a':[1, 2], 'b': expon()}
>>> param_list = list(ParameterSampler(param_grid, n_iter=4))
>>> rounded_list = [dict((k, round(v, 6)) for (k, v) in d.items())
... for d in param_list]
>>> rounded_list == [{'b': 0.89856, 'a': 1},
... {'b': 0.923223, 'a': 1},
... {'b': 1.878964, 'a': 2},
... {'b': 1.038159, 'a': 2}]
True
"""
def __init__(self, param_distributions, n_iter, random_state=None):
self.param_distributions = param_distributions
self.n_iter = n_iter
self.random_state = random_state
def __iter__(self):
# check if all distributions are given as lists
# in this case we want to sample without replacement
all_lists = np.all([not hasattr(v, "rvs")
for v in self.param_distributions.values()])
rnd = check_random_state(self.random_state)
if all_lists:
# look up sampled parameter settings in parameter grid
param_grid = ParameterGrid(self.param_distributions)
grid_size = len(param_grid)
if grid_size < self.n_iter:
raise ValueError(
"The total space of parameters %d is smaller "
"than n_iter=%d." % (grid_size, self.n_iter)
+ " For exhaustive searches, use GridSearchCV.")
for i in sample_without_replacement(grid_size, self.n_iter,
random_state=rnd):
yield param_grid[i]
else:
# Always sort the keys of a dictionary, for reproducibility
items = sorted(self.param_distributions.items())
for _ in six.moves.range(self.n_iter):
params = dict()
for k, v in items:
if hasattr(v, "rvs"):
params[k] = v.rvs()
else:
params[k] = v[rnd.randint(len(v))]
yield params
def __len__(self):
"""Number of points that will be sampled."""
return self.n_iter
def fit_grid_point(X, y, estimator, parameters, train, test, scorer,
verbose, error_score='raise', **fit_params):
"""Run fit on one set of parameters.
.. deprecated:: 0.18
This module will be removed in 0.20.
Use :func:`sklearn.model_selection.fit_grid_point` instead.
Parameters
----------
X : array-like, sparse matrix or list
Input data.
y : array-like or None
Targets for input data.
estimator : estimator object
A object of that type is instantiated for each grid point.
This is assumed to implement the scikit-learn estimator interface.
Either estimator needs to provide a ``score`` function,
or ``scoring`` must be passed.
parameters : dict
Parameters to be set on estimator for this grid point.
train : ndarray, dtype int or bool
Boolean mask or indices for training set.
test : ndarray, dtype int or bool
Boolean mask or indices for test set.
scorer : callable or None.
If provided must be a scorer callable object / function with signature
``scorer(estimator, X, y)``.
verbose : int
Verbosity level.
**fit_params : kwargs
Additional parameter passed to the fit function of the estimator.
error_score : 'raise' (default) or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised. If a numeric value is given,
FitFailedWarning is raised. This parameter does not affect the refit
step, which will always raise the error.
Returns
-------
score : float
Score of this parameter setting on given training / test split.
parameters : dict
The parameters that have been evaluated.
n_samples_test : int
Number of test samples in this split.
"""
score, n_samples_test, _ = _fit_and_score(estimator, X, y, scorer, train,
test, verbose, parameters,
fit_params, error_score)
return score, parameters, n_samples_test
def _check_param_grid(param_grid):
if hasattr(param_grid, 'items'):
param_grid = [param_grid]
for p in param_grid:
for name, v in p.items():
if isinstance(v, np.ndarray) and v.ndim > 1:
raise ValueError("Parameter array should be one-dimensional.")
check = [isinstance(v, k) for k in (list, tuple, np.ndarray)]
if True not in check:
raise ValueError("Parameter values for parameter ({0}) need "
"to be a sequence.".format(name))
if len(v) == 0:
raise ValueError("Parameter values for parameter ({0}) need "
"to be a non-empty sequence.".format(name))
class _CVScoreTuple (namedtuple('_CVScoreTuple',
('parameters',
'mean_validation_score',
'cv_validation_scores'))):
# A raw namedtuple is very memory efficient as it packs the attributes
# in a struct to get rid of the __dict__ of attributes in particular it
# does not copy the string for the keys on each instance.
# By deriving a namedtuple class just to introduce the __repr__ method we
# would also reintroduce the __dict__ on the instance. By telling the
# Python interpreter that this subclass uses static __slots__ instead of
# dynamic attributes. Furthermore we don't need any additional slot in the
# subclass so we set __slots__ to the empty tuple.
__slots__ = ()
def __repr__(self):
"""Simple custom repr to summarize the main info"""
return "mean: {0:.5f}, std: {1:.5f}, params: {2}".format(
self.mean_validation_score,
np.std(self.cv_validation_scores),
self.parameters)
class BaseSearchCV(six.with_metaclass(ABCMeta, BaseEstimator,
MetaEstimatorMixin)):
"""Base class for hyper parameter search with cross-validation."""
@abstractmethod
def __init__(self, estimator, scoring=None,
fit_params=None, n_jobs=1, iid=True,
refit=True, cv=None, verbose=0, pre_dispatch='2*n_jobs',
error_score='raise'):
self.scoring = scoring
self.estimator = estimator
self.n_jobs = n_jobs
self.fit_params = fit_params if fit_params is not None else {}
self.iid = iid
self.refit = refit
self.cv = cv
self.verbose = verbose
self.pre_dispatch = pre_dispatch
self.error_score = error_score
@property
def _estimator_type(self):
return self.estimator._estimator_type
@property
def classes_(self):
return self.best_estimator_.classes_
def score(self, X, y=None):
"""Returns the score on the given data, if the estimator has been refit.
This uses the score defined by ``scoring`` where provided, and the
``best_estimator_.score`` method otherwise.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Input data, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples] or [n_samples, n_output], optional
Target relative to X for classification or regression;
None for unsupervised learning.
Returns
-------
score : float
Notes
-----
* The long-standing behavior of this method changed in version 0.16.
* It no longer uses the metric provided by ``estimator.score`` if the
``scoring`` parameter was set when fitting.
"""
if self.scorer_ is None:
raise ValueError("No score function explicitly defined, "
"and the estimator doesn't provide one %s"
% self.best_estimator_)
return self.scorer_(self.best_estimator_, X, y)
@if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
def predict(self, X):
"""Call predict on the estimator with the best found parameters.
Only available if ``refit=True`` and the underlying estimator supports
``predict``.
Parameters
-----------
X : indexable, length n_samples
Must fulfill the input assumptions of the
underlying estimator.
"""
return self.best_estimator_.predict(X)
@if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
def predict_proba(self, X):
"""Call predict_proba on the estimator with the best found parameters.
Only available if ``refit=True`` and the underlying estimator supports
``predict_proba``.
Parameters
-----------
X : indexable, length n_samples
Must fulfill the input assumptions of the
underlying estimator.
"""
return self.best_estimator_.predict_proba(X)
@if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
def predict_log_proba(self, X):
"""Call predict_log_proba on the estimator with the best found parameters.
Only available if ``refit=True`` and the underlying estimator supports
``predict_log_proba``.
Parameters
-----------
X : indexable, length n_samples
Must fulfill the input assumptions of the
underlying estimator.
"""
return self.best_estimator_.predict_log_proba(X)
@if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
def decision_function(self, X):
"""Call decision_function on the estimator with the best found parameters.
Only available if ``refit=True`` and the underlying estimator supports
``decision_function``.
Parameters
-----------
X : indexable, length n_samples
Must fulfill the input assumptions of the
underlying estimator.
"""
return self.best_estimator_.decision_function(X)
@if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
def transform(self, X):
"""Call transform on the estimator with the best found parameters.
Only available if the underlying estimator supports ``transform`` and
``refit=True``.
Parameters
-----------
X : indexable, length n_samples
Must fulfill the input assumptions of the
underlying estimator.
"""
return self.best_estimator_.transform(X)
@if_delegate_has_method(delegate=('best_estimator_', 'estimator'))
def inverse_transform(self, Xt):
"""Call inverse_transform on the estimator with the best found parameters.
Only available if the underlying estimator implements ``inverse_transform`` and
``refit=True``.
Parameters
-----------
Xt : indexable, length n_samples
Must fulfill the input assumptions of the
underlying estimator.
"""
return self.best_estimator_.inverse_transform(Xt)
def _fit(self, X, y, parameter_iterable):
"""Actual fitting, performing the search over parameters."""
estimator = self.estimator
cv = self.cv
self.scorer_ = check_scoring(self.estimator, scoring=self.scoring)
n_samples = _num_samples(X)
X, y = indexable(X, y)
if y is not None:
if len(y) != n_samples:
raise ValueError('Target variable (y) has a different number '
'of samples (%i) than data (X: %i samples)'
% (len(y), n_samples))
cv = check_cv(cv, X, y, classifier=is_classifier(estimator))
if self.verbose > 0:
if isinstance(parameter_iterable, Sized):
n_candidates = len(parameter_iterable)
print("Fitting {0} folds for each of {1} candidates, totalling"
" {2} fits".format(len(cv), n_candidates,
n_candidates * len(cv)))
base_estimator = clone(self.estimator)
pre_dispatch = self.pre_dispatch
out = Parallel(
n_jobs=self.n_jobs, verbose=self.verbose,
pre_dispatch=pre_dispatch
)(
delayed(_fit_and_score)(clone(base_estimator), X, y, self.scorer_,
train, test, self.verbose, parameters,
self.fit_params, return_parameters=True,
error_score=self.error_score)
for parameters in parameter_iterable
for train, test in cv)
# Out is a list of triplet: score, estimator, n_test_samples
n_fits = len(out)
n_folds = len(cv)
scores = list()
grid_scores = list()
for grid_start in range(0, n_fits, n_folds):
n_test_samples = 0
score = 0
all_scores = []
for this_score, this_n_test_samples, _, parameters in \
out[grid_start:grid_start + n_folds]:
all_scores.append(this_score)
if self.iid:
this_score *= this_n_test_samples
n_test_samples += this_n_test_samples
score += this_score
if self.iid:
score /= float(n_test_samples)
else:
score /= float(n_folds)
scores.append((score, parameters))
# TODO: shall we also store the test_fold_sizes?
grid_scores.append(_CVScoreTuple(
parameters,
score,
np.array(all_scores)))
# Store the computed scores
self.grid_scores_ = grid_scores
# Find the best parameters by comparing on the mean validation score:
# note that `sorted` is deterministic in the way it breaks ties
best = sorted(grid_scores, key=lambda x: x.mean_validation_score,
reverse=True)[0]
self.best_params_ = best.parameters
self.best_score_ = best.mean_validation_score
if self.refit:
# fit the best estimator using the entire dataset
# clone first to work around broken estimators
best_estimator = clone(base_estimator).set_params(
**best.parameters)
if y is not None:
best_estimator.fit(X, y, **self.fit_params)
else:
best_estimator.fit(X, **self.fit_params)
self.best_estimator_ = best_estimator
return self
class GridSearchCV(BaseSearchCV):
"""Exhaustive search over specified parameter values for an estimator.
.. deprecated:: 0.18
This module will be removed in 0.20.
Use :class:`sklearn.model_selection.GridSearchCV` instead.
Important members are fit, predict.
GridSearchCV implements a "fit" and a "score" method.
It also implements "predict", "predict_proba", "decision_function",
"transform" and "inverse_transform" if they are implemented in the
estimator used.
The parameters of the estimator used to apply these methods are optimized
by cross-validated grid-search over a parameter grid.
Read more in the :ref:`User Guide <grid_search>`.
Parameters
----------
estimator : estimator object.
A object of that type is instantiated for each grid point.
This is assumed to implement the scikit-learn estimator interface.
Either estimator needs to provide a ``score`` function,
or ``scoring`` must be passed.
param_grid : dict or list of dictionaries
Dictionary with parameters names (string) as keys and lists of
parameter settings to try as values, or a list of such
dictionaries, in which case the grids spanned by each dictionary
in the list are explored. This enables searching over any sequence
of parameter settings.
scoring : string, callable or None, default=None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
If ``None``, the ``score`` method of the estimator is used.
fit_params : dict, optional
Parameters to pass to the fit method.
n_jobs: int, default: 1 :
The maximum number of estimators fit in parallel.
- If -1 all CPUs are used.
- If 1 is given, no parallel computing code is used at all,
which is useful for debugging.
- For ``n_jobs`` below -1, ``(n_cpus + n_jobs + 1)`` are used.
For example, with ``n_jobs = -2`` all CPUs but one are used.
.. versionchanged:: 0.17
Upgraded to joblib 0.9.3.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
iid : boolean, default=True
If True, the data is assumed to be identically distributed across
the folds, and the loss minimized is the total loss per sample,
and not the mean loss across the folds.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass,
:class:`sklearn.model_selection.StratifiedKFold` is used. In all
other cases, :class:`sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
refit : boolean, default=True
Refit the best estimator with the entire dataset.
If "False", it is impossible to make predictions using
this GridSearchCV instance after fitting.
verbose : integer
Controls the verbosity: the higher, the more messages.
error_score : 'raise' (default) or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised. If a numeric value is given,
FitFailedWarning is raised. This parameter does not affect the refit
step, which will always raise the error.
Examples
--------
>>> from sklearn import svm, grid_search, datasets
>>> iris = datasets.load_iris()
>>> parameters = {'kernel':('linear', 'rbf'), 'C':[1, 10]}
>>> svr = svm.SVC()
>>> clf = grid_search.GridSearchCV(svr, parameters)
>>> clf.fit(iris.data, iris.target)
... # doctest: +NORMALIZE_WHITESPACE +ELLIPSIS
GridSearchCV(cv=None, error_score=...,
estimator=SVC(C=1.0, cache_size=..., class_weight=..., coef0=...,
decision_function_shape='ovr', degree=..., gamma=...,
kernel='rbf', max_iter=-1, probability=False,
random_state=None, shrinking=True, tol=...,
verbose=False),
fit_params={}, iid=..., n_jobs=1,
param_grid=..., pre_dispatch=..., refit=...,
scoring=..., verbose=...)
Attributes
----------
grid_scores_ : list of namedtuples
Contains scores for all parameter combinations in param_grid.
Each entry corresponds to one parameter setting.
Each namedtuple has the attributes:
* ``parameters``, a dict of parameter settings
* ``mean_validation_score``, the mean score over the
cross-validation folds
* ``cv_validation_scores``, the list of scores for each fold
best_estimator_ : estimator
Estimator that was chosen by the search, i.e. estimator
which gave highest score (or smallest loss if specified)
on the left out data. Not available if refit=False.
best_score_ : float
Score of best_estimator on the left out data.
best_params_ : dict
Parameter setting that gave the best results on the hold out data.
scorer_ : function
Scorer function used on the held out data to choose the best
parameters for the model.
Notes
------
The parameters selected are those that maximize the score of the left out
data, unless an explicit score is passed in which case it is used instead.
If `n_jobs` was set to a value higher than one, the data is copied for each
point in the grid (and not `n_jobs` times). This is done for efficiency
reasons if individual jobs take very little time, but may raise errors if
the dataset is large and not enough memory is available. A workaround in
this case is to set `pre_dispatch`. Then, the memory is copied only
`pre_dispatch` many times. A reasonable value for `pre_dispatch` is `2 *
n_jobs`.
See Also
---------
:class:`ParameterGrid`:
generates all the combinations of a hyperparameter grid.
:func:`sklearn.cross_validation.train_test_split`:
utility function to split the data into a development set usable
for fitting a GridSearchCV instance and an evaluation set for
its final evaluation.
:func:`sklearn.metrics.make_scorer`:
Make a scorer from a performance metric or loss function.
"""
def __init__(self, estimator, param_grid, scoring=None, fit_params=None,
n_jobs=1, iid=True, refit=True, cv=None, verbose=0,
pre_dispatch='2*n_jobs', error_score='raise'):
super(GridSearchCV, self).__init__(
estimator, scoring, fit_params, n_jobs, iid,
refit, cv, verbose, pre_dispatch, error_score)
self.param_grid = param_grid
_check_param_grid(param_grid)
def fit(self, X, y=None):
"""Run fit with all sets of parameters.
Parameters
----------
X : array-like, shape = [n_samples, n_features]
Training vector, where n_samples is the number of samples and
n_features is the number of features.
y : array-like, shape = [n_samples] or [n_samples, n_output], optional
Target relative to X for classification or regression;
None for unsupervised learning.
"""
return self._fit(X, y, ParameterGrid(self.param_grid))
class RandomizedSearchCV(BaseSearchCV):
"""Randomized search on hyper parameters.
.. deprecated:: 0.18
This module will be removed in 0.20.
Use :class:`sklearn.model_selection.RandomizedSearchCV` instead.
RandomizedSearchCV implements a "fit" and a "score" method.
It also implements "predict", "predict_proba", "decision_function",
"transform" and "inverse_transform" if they are implemented in the
estimator used.
The parameters of the estimator used to apply these methods are optimized
by cross-validated search over parameter settings.
In contrast to GridSearchCV, not all parameter values are tried out, but
rather a fixed number of parameter settings is sampled from the specified
distributions. The number of parameter settings that are tried is
given by n_iter.
If all parameters are presented as a list,
sampling without replacement is performed. If at least one parameter
is given as a distribution, sampling with replacement is used.
It is highly recommended to use continuous distributions for continuous
parameters.
Read more in the :ref:`User Guide <randomized_parameter_search>`.
Parameters
----------
estimator : estimator object.
A object of that type is instantiated for each grid point.
This is assumed to implement the scikit-learn estimator interface.
Either estimator needs to provide a ``score`` function,
or ``scoring`` must be passed.
param_distributions : dict
Dictionary with parameters names (string) as keys and distributions
or lists of parameters to try. Distributions must provide a ``rvs``
method for sampling (such as those from scipy.stats.distributions).
If a list is given, it is sampled uniformly.
n_iter : int, default=10
Number of parameter settings that are sampled. n_iter trades
off runtime vs quality of the solution.
scoring : string, callable or None, default=None
A string (see model evaluation documentation) or
a scorer callable object / function with signature
``scorer(estimator, X, y)``.
If ``None``, the ``score`` method of the estimator is used.
fit_params : dict, optional
Parameters to pass to the fit method.
n_jobs: int, default: 1 :
The maximum number of estimators fit in parallel.
- If -1 all CPUs are used.
- If 1 is given, no parallel computing code is used at all,
which is useful for debugging.
- For ``n_jobs`` below -1, ``(n_cpus + n_jobs + 1)`` are used.
For example, with ``n_jobs = -2`` all CPUs but one are used.
pre_dispatch : int, or string, optional
Controls the number of jobs that get dispatched during parallel
execution. Reducing this number can be useful to avoid an
explosion of memory consumption when more jobs get dispatched
than CPUs can process. This parameter can be:
- None, in which case all the jobs are immediately
created and spawned. Use this for lightweight and
fast-running jobs, to avoid delays due to on-demand
spawning of the jobs
- An int, giving the exact number of total jobs that are
spawned
- A string, giving an expression as a function of n_jobs,
as in '2*n_jobs'
iid : boolean, default=True
If True, the data is assumed to be identically distributed across
the folds, and the loss minimized is the total loss per sample,
and not the mean loss across the folds.
cv : int, cross-validation generator or an iterable, optional
Determines the cross-validation splitting strategy.
Possible inputs for cv are:
- None, to use the default 3-fold cross-validation,
- integer, to specify the number of folds.
- An object to be used as a cross-validation generator.
- An iterable yielding train/test splits.
For integer/None inputs, if the estimator is a classifier and ``y`` is
either binary or multiclass,
:class:`sklearn.model_selection.StratifiedKFold` is used. In all
other cases, :class:`sklearn.model_selection.KFold` is used.
Refer :ref:`User Guide <cross_validation>` for the various
cross-validation strategies that can be used here.
refit : boolean, default=True
Refit the best estimator with the entire dataset.
If "False", it is impossible to make predictions using
this RandomizedSearchCV instance after fitting.
verbose : integer
Controls the verbosity: the higher, the more messages.
random_state : int, RandomState instance or None, optional, default=None
Pseudo random number generator state used for random uniform sampling
from lists of possible values instead of scipy.stats distributions.
If int, random_state is the seed used by the random number generator;
If RandomState instance, random_state is the random number generator;
If None, the random number generator is the RandomState instance used
by `np.random`.
error_score : 'raise' (default) or numeric
Value to assign to the score if an error occurs in estimator fitting.
If set to 'raise', the error is raised. If a numeric value is given,
FitFailedWarning is raised. This parameter does not affect the refit
step, which will always raise the error.
Attributes
----------
grid_scores_ : list of namedtuples
Contains scores for all parameter combinations in param_grid.
Each entry corresponds to one parameter setting.
Each namedtuple has the attributes:
* ``parameters``, a dict of parameter settings
* ``mean_validation_score``, the mean score over the
cross-validation folds
* ``cv_validation_scores``, the list of scores for each fold
best_estimator_ : estimator
Estimator that was chosen by the search, i.e. estimator
which gave highest score (or smallest loss if specified)
on the left out data. Not available if refit=False.
best_score_ : float
Score of best_estimator on the left out data.
best_params_ : dict
Parameter setting that gave the best results on the hold out data.
Notes
-----
The parameters selected are those that maximize the score of the held-out
data, according to the scoring parameter.
If `n_jobs` was set to a value higher than one, the data is copied for each
parameter setting(and not `n_jobs` times). This is done for efficiency
reasons if individual jobs take very little time, but may raise errors if
the dataset is large and not enough memory is available. A workaround in