-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
56 lines (49 loc) · 1.58 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from . import preprocessing
from . import model
#import pickle
def main():
# hyperparameters from paper:
batch_size = 100
layers = 1
encoder = BinaryTreeLSTM()
#Decoder = LSTM
lr = 0.005
h_size = 256
enbedding_size = 256
dropout = 0.5
#Weights initialization : [-0.1,0.1]
epochs = 30
# call encoder-decoder model
model = TreeLSTM(encoder, decoder)
# define optimizer
# initialize epochs
# train network and start timer and end timer for each epoch
# start counter
start = time.time()
model.train()
for epoch in range(epochs): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
# get the inputs; data is a list of [inputs, labels]
inputs, labels = data
# zero the parameter gradients
optimizer.zero_grad()
# forward + backward + optimize
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# print statistics
running_loss += loss.item()
if i % 2000 == 1999: # print every 2000 mini-batches
print('[%d, %5d] loss: %.3f' %
(epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')
# end timer
end = time.time()
print ('Total time in seconds:')
print (end-start)
# save model for web app
# model = pickle.load(open('model.pkl','rb'))
torch.save(model, 'model.pt')