-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathllm_ik.py
3903 lines (3823 loc) · 197 KB
/
llm_ik.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import argparse
import ast
import copy
import importlib
import importlib.util
import json
import logging
import math
import numbers
import os.path
import random
import re
import time
import traceback
import warnings
from decimal import Decimal
from typing import Any
import ikpy.chain
import ikpy.utils.plot as plot_utils
import numpy as np
import pandas as pd
from func_timeout import func_timeout, FunctionTimedOut
from ikpy.link import URDFLink
from matplotlib import pyplot as plt
from num2words import num2words
from openai import NOT_GIVEN, OpenAI
from scipy.spatial.transform import Rotation
from tabulate import tabulate
# Folders.
ROBOTS = "Robots"
MODELS = "Models"
PROVIDERS = "Providers"
KEYS = "Keys"
INFO = "Info"
INTERACTIONS = "Interactions"
ELAPSED = "Elapsed"
SOLUTIONS = "Solutions"
RESULTS = "Results"
TOKENS = "Tokens"
# Execution modes.
NORMAL = "Normal"
EXTEND = "Extend"
DYNAMIC = "Dynamic"
CUMULATIVE = "Cumulative"
TRANSFER = "Transfer"
# API interaction file naming.
MESSAGE_PROMPT = "Prompt"
MESSAGE_FEEDBACK = "Feedback"
MESSAGE_FORWARD = "Forward"
MESSAGE_TEST = "Test"
MESSAGE_DONE = "Done"
RESPONSE = "Response"
INHERITED = "Inherited"
# Data naming.
POSITION = "Position"
TRANSFORM = "Transform"
TRAINING_TITLE = "Training"
EVALUATING_TITLE = "Evaluating"
AVERAGE = "Average"
# Default Parameters.
TRAINING = 1000
EVALUATING = 1000
SEED = 42
MAX_PROMPTS = 5
EXAMPLES = 10
DISTANCE_ERROR = 0.01
ANGLE_ERROR = 1
WAIT = 10
# Default bounding value.
BOUND = 2 * np.pi
# Handle timing out, as no single iteration should ever come close to reaching a second.
MAX_TIME = 1
ERROR_TIMED_OUT = "ERROR_TIMED_OUT"
# All fields for evaluations.
FIELDS = ["Success Rate (%)", "Failure Rate (%)", "Error Rate (%)", "Average Failure Distance",
"Average Failure Angle (°)", "Average Elapsed Time (s)", "Generation Time (s)", "Mode", "Feedbacks Given",
"Forwards Kinematics Calls", "Testing Calls", "Reasoning", "Functions", "API", "Cost ($)"]
# All numeric fields for evaluations.
NUMERIC = ["Success Rate (%)", "Failure Rate (%)", "Error Rate (%)", "Average Failure Distance",
"Average Failure Angle (°)", "Average Elapsed Time (s)", "Generation Time (s)", "Feedbacks Given",
"Forwards Kinematics Calls", "Testing Calls", "Cost ($)"]
def extract_method_call(s: str, forward_parameters: int, test_parameters: int, prioritize_forward: bool = False) -> str:
"""
Extracts the last occurrence of either "FORWARD_KINEMATICS" or "TEST_SOLUTION" along with up to the specified
number of parameters from the input string.
:param s: The input plain-text string.
:param forward_parameters: Maximum number of parameters for "FORWARD_KINEMATICS".
:param test_parameters: Maximum number of parameters for "TEST_SOLUTION".
:param prioritize_forward: On initial calls, we want to prioritize extracting forwards calls if multiple were made.
:return: The method call with parameters as a single string, or an empty string if neither method is found.
"""
# Define the method names and their corresponding max parameters.
methods = {
"FORWARD_KINEMATICS": forward_parameters,
"TEST_SOLUTION": test_parameters
}
# See if we should prioritize forward kinematics calls.
if prioritize_forward:
# Compile a regex pattern to match only the forward kinematics calls.
pattern = re.compile(r"(?<!\w)(FORWARD_KINEMATICS)\b")
# Find all matches in the string.
matches = list(pattern.finditer(s))
# Otherwise, get the testing calls.
if not matches:
# Compile a regex pattern to match only the testing calls.
pattern = re.compile(r"(?<!\w)(TEST_SOLUTION)\b")
# Find all matches in the string.
matches = list(pattern.finditer(s))
# Otherwise, if not prioritized or no forward kinematics matches, search for all matches.
else:
# Compile a regex pattern to match either method name ensuring they are not part of larger words.
pattern = re.compile(r"(?<!\w)(FORWARD_KINEMATICS|TEST_SOLUTION)\b")
# Find all matches in the string.
matches = list(pattern.finditer(s))
# If no matches found, return empty string.
if not matches:
return ""
# Select the last match.
last_match = matches[-1]
method_name = last_match.group(1)
max_params = methods[method_name]
# Get the substring starting right after the method name.
start_pos = last_match.end()
substring = s[start_pos:]
# Define a regex pattern to match numeric values including positive and negative values with scientific notation.
number_pattern = re.compile(r"[+-]?\d+(?:\.\d+)?(?:[eE][+-]?\d+)?")
# Find all numeric matches in the substring.
numeric_params = number_pattern.findall(substring)
# Extract up to the maximum number of parameters.
extracted_params = numeric_params[:max_params]
# If no numeric parameters found, return just the method name
if not extracted_params:
return method_name
# Combine the method name and parameters into a single string
return " ".join([method_name] + extracted_params)
def process_code(code: str) -> str:
"""
Processes the input Python code string according to the specified rules:
1. Replace print statements with pass.
2. Remove empty if conditions with only pass.
3. Remove empty loops with only pass.
4. Remove empty functions with only pass and their calls.
5. Remove trailing code after the last function.
:param code: The code to clean.
:return: The cleaned code.
"""
class CodeTransformer(ast.NodeTransformer):
"""
Helper class to transform code.
"""
def __init__(self):
"""
Initialize the code to flag that there are no empty functions and nothing has changed.
"""
super().__init__()
self.empty_functions = set()
self.changed = False
def replace_print_with_pass(self, node):
"""
Replace print statements with passes.
:param node: The node to replace.
:return: The updated node.
"""
if isinstance(node, ast.Expr) and isinstance(node.value, ast.Call):
func = node.value.func
if isinstance(func, ast.Name) and func.id == "print":
self.changed = True
return ast.Pass()
return node
def visit_Expr(self, node):
"""
Visit an expression.
:param node: The mode.
:return: The node with all prints removed.
"""
return self.replace_print_with_pass(node)
def visit_Call(self, node):
"""
Visit a call.
:param node: The mode.
:return: The node after visiting.
"""
return self.generic_visit(node)
def visit_FunctionDef(self, node):
"""
Visit a function definition.
:param node: The node.
:return: The node after visiting.
"""
self.generic_visit(node)
if all(isinstance(stmt, ast.Pass) for stmt in node.body):
self.empty_functions.add(node.name)
self.changed = True
# Remove the function.
return None
return node
def visit_If(self, node):
"""
Visit an if statement.
:param node: The node.
:return: The node after visiting.
"""
self.generic_visit(node)
if all(isinstance(stmt, ast.Pass) for stmt in node.body) and not node.orelse:
self.changed = True
# Remove the if statement.
return None
return node
def visit_For(self, node):
"""
Visit a for loop.
:param node: The node.
:return: The node after visiting.
"""
self.generic_visit(node)
if all(isinstance(stmt, ast.Pass) for stmt in node.body):
self.changed = True
# Remove the for loop.
return None
return node
def visit_While(self, node):
"""
Visit a while loop.
:param node: The node.
:return: The node after visiting.
"""
self.generic_visit(node)
if all(isinstance(stmt, ast.Pass) for stmt in node.body):
self.changed = True
# Remove the while loop.
return None
return node
def remove_function_calls(self, node):
"""
Removes standalone calls to empty functions.
:param node: The node.
:return: The node after visiting.
"""
if isinstance(node, ast.Expr) and isinstance(node.value, ast.Call):
func = node.value.func
if isinstance(func, ast.Name) and func.id in self.empty_functions:
self.changed = True
# Remove the call.
return None
return node
def visit_Module(self, node):
"""
Visit the entire module.
:param node: The node.
:return: The node after visiting.
"""
self.generic_visit(node)
# Remove trailing code after the last function.
last_func = None
for idx, stmt in enumerate(node.body):
if isinstance(stmt, ast.FunctionDef):
last_func = idx
if last_func is not None and last_func < len(node.body) - 1:
node.body = node.body[:last_func + 1]
self.changed = True
return node
# Parse the code into an AST.
try:
tree = ast.parse(code)
except Exception as e:
logging.info(f"Invalid Python code provided: {e}")
return code
transformer = CodeTransformer()
# Step 1 to 5 with multiple passes.
while True:
transformer.changed = False
tree = transformer.visit(tree)
ast.fix_missing_locations(tree)
# Step 4: Remove calls to empty functions.
if transformer.empty_functions:
# Create a new transformer to remove calls to empty functions.
call_remover = CodeTransformer()
call_remover.empty_functions = transformer.empty_functions.copy()
call_remover.visit = call_remover.remove_function_calls
# Override to prevent further changes.
call_remover.generic_visit = lambda node: node
# noinspection PyArgumentList
tree = call_remover.visit(tree)
ast.fix_missing_locations(tree)
transformer.changed = transformer.changed or call_remover.changed
# If no changes in this pass, break.
if not transformer.changed:
break
# Reset empty_functions for the next pass.
transformer.empty_functions.clear()
# Unparse the AST back to code.
processed_code = ast.unparse(tree)
return processed_code
class Robot:
"""
Handle all aspects of serial robots.
"""
def __init__(self, name: str):
"""
Initialize the robot.
:param name: The name of the URDF to load.
"""
# Make the name which was passed valid.
if not name.endswith(".urdf"):
name = name + ".urdf"
self.name = os.path.splitext(name)[0]
# Cache the to save info to.
self.info = os.path.join(INFO, self.name)
self.results = os.path.join(RESULTS, self.name, "IKPy")
self.chains = None
self.joints = 0
self.training = 0
self.evaluating = 0
self.data = {}
# Nothing to do if the file does not exist.
path = os.path.join(ROBOTS, name)
if not os.path.exists(path):
logging.error(f"{self.name} | Path '{path}' does not exist.")
return
# Try to load the file, exiting if there are errors.
try:
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
chain = ikpy.chain.Chain.from_urdf_file(path)
except Exception as e:
logging.error(f"{self.name} | Could not parse '{path}': {e}")
return
# Get the joints we need, as any leading fixed ones can be removed.
zeros = np.array([0, 0, 0])
links = []
active = []
for link in chain.links:
# We only care for properly formatted links.
if not isinstance(link, URDFLink):
continue
# If this is not a fixed link, it is a joint we can set.
joint = link.joint_type != "fixed"
active.append(joint)
if joint:
self.joints += 1
# If this is the first properly formatted link, it should be at the origin.
if len(links) > 0:
origin_translation = link.origin_translation
origin_orientation = link.origin_orientation
# Otherwise, use the existing offset.
else:
origin_translation = zeros
origin_orientation = zeros
# Store the link.
links.append(URDFLink(link.name, origin_translation, origin_orientation, link.rotation, link.translation,
link.bounds, "rpy", link.use_symbolic_matrix, link.joint_type))
if self.joints < 1:
logging.error(f"{self.name} | No joints.")
return
# Build a lookup for the moveable joints in the links.
total = len(links)
joint_indices = {}
index = 0
for i in range(total):
if active[i]:
joint_indices[index] = i
index += 1
# Build all possible sub chains.
self.chains = {}
# All possible starting lower joints.
os.makedirs(self.info, exist_ok=True)
for lower in range(self.joints):
self.chains[lower] = {}
# All possible upper ending joints.
for upper in range(lower, self.joints):
# Get the starting and ending joint indices.
lower_index = joint_indices[lower]
upper_index = joint_indices[upper] + 1
# If the ending joint is the last in the chain, use the whole chain.
if upper_index >= total:
instance_links = links[lower_index:]
instance_active = active[lower_index:]
# Otherwise, use the active joints, but set the next out of bounds joint as an inactive end effector.
else:
instance_links = links[lower_index:upper_index]
instance_active = active[lower_index:upper_index]
tcp = links[upper_index]
instance_links.append(URDFLink("TCP", tcp.origin_translation, tcp.origin_orientation,
use_symbolic_matrix=tcp.use_symbolic_matrix, joint_type="fixed"))
instance_active.append(False)
# Ensure the base joint is at the origin.
base = instance_links[0]
instance_links[0] = URDFLink(base.name, zeros, zeros, base.rotation, base.translation, base.bounds,
"rpy", base.use_symbolic_matrix, base.joint_type)
# Break references to ensure we can name each link properly.
instance_links = copy.deepcopy(instance_links)
# Name every joint based on its type.
instance_count = len(instance_links)
fixed = 0
revolute = 0
prismatic = 0
for i in range(0, instance_count):
joint_type = instance_links[i].joint_type.capitalize()
if joint_type == "Fixed":
fixed += 1
number = fixed
elif joint_type == "Revolute":
revolute += 1
number = revolute
else:
prismatic += 1
number = prismatic
instance_links[i].name = f"{joint_type} {number}"
# If the last joint is not fixed, this chain cannot be used.
if instance_links[-1].joint_type != "fixed":
self.chains[lower][upper] = None
logging.warning(f"{self.name} | {lower + 1} to {upper + 1} | Last joint is not fixed; skipping.")
continue
# Ensure the TCP is named correctly.
instance_links[-1].name = "TCP"
# Build and cache this sub chain.
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=UserWarning)
chain = ikpy.chain.Chain(instance_links, instance_active,
f"{self.name} from joints {lower + 1} to {upper + 1}")
self.chains[lower][upper] = chain
with open(os.path.join(self.info, f"{lower + 1}-{upper + 1}.txt"), "w", encoding="utf-8",
errors="ignore") as file:
file.write(self.prepare_llm(lower, upper, True))
logging.info(f"{self.name} | Loaded.")
def __str__(self) -> str:
"""
Get the table of the details of the full robot.
:return: The table of the details of the full robot.
"""
return self.details()[0]
def save_results(self) -> None:
"""
Save the results for built-in inverse kinematics.
:return: Nothing.
"""
# Nothing to do if the robot is not valid.
if not self.is_valid():
logging.error(f"{self.name} | Save Results | Robot not configured.")
return None
# Loop for every link.
for lower in range(self.joints):
for upper in range(lower, self.joints):
for orientation in [False, True]:
# Single joints only solve for position.
if orientation and lower == upper:
continue
# Get the data for this.
data = self.get_data(lower, upper, False, orientation)
total = len(data)
if total < 1:
continue
# Tabulate results.
successes = 0
total_distance = 0
total_angle = 0
total_time = 0
for point in data:
distance = point["Distance"]
angle = point["Angle"] if orientation else 0
total_time += point["Time"]
did_reach = reached(distance, angle)
if did_reach:
successes += 1
continue
total_distance += distance
total_angle += angle
# Format results.
failures = total - successes
total_distance = 0 if failures < 1 else neat(total_distance / failures)
total_angle = 0 if failures < 1 else neat(total_angle / failures)
total_time = neat(total_time / total)
successes = neat(successes / total * 100)
failures = neat(failures / total * 100)
s = ("Success Rate (%),Failure Rate (%),Error Rate (%),Average Failure Distance,Average Failure "
"Angle (°),Average Elapsed Time (s),Generation Time (s),Mode,Feedbacks Given,Forwards "
f"Kinematics Calls,Testing Calls,Reasoning,Functions,API,Cost ($)\n{successes}%,{failures}%,0%"
f",{total_distance},{total_angle if orientation else 0}°,{total_time} s,0 s,,0,0,0,False,"
"False,False,$0")
# Save results.
os.makedirs(self.results, exist_ok=True)
path = os.path.join(self.results, f"{lower}-{upper}-{TRANSFORM if orientation else POSITION}.csv")
with open(path, "w", encoding="utf-8", errors="ignore") as file:
file.write(s)
logging.info(f"{self.name} | Save Results | IKPy results saved.")
def load_data(self) -> None:
"""
Load data for the robot to use.
:return: Nothing.
"""
# Nothing to do if the robot is not valid.
if not self.is_valid():
logging.error(f"{self.name} | Load Data | Robot not configured.")
return None
# Clear any previous data.
self.data = {}
# Set the random seed.
random.seed(SEED)
np.random.seed(SEED)
# If there is already data for this configuration, load it.
path = os.path.join(self.info, f"{SEED}-{TRAINING}-{EVALUATING}.json")
if os.path.exists(path):
df = pd.read_json(path, orient="records", lines=True)
self.data = df.to_dict(orient="dict")
logging.info(f"{self.name}| Seed = {SEED} | Training = {TRAINING} | Evaluating = {EVALUATING} | Generated "
f"data loaded.")
self.save_results()
return None
# Run all possible joint configurations.
for lower in range(self.joints):
self.data[lower] = {}
for upper in range(lower, self.joints):
bounds = []
# Only run for valid chains.
chain = self.chains[lower][upper]
if chain is None:
continue
# Define the bounds for randomly generating poses.
for link in chain.links:
if link.joint_type == "fixed":
continue
if link.bounds is None or link.bounds == (-np.inf, np.inf):
bounds.append(None)
else:
bounds.append(link.bounds)
# Create the data structures to hold the data.
training_position = {"Joints": [], "Position": []}
training_transform = None if lower == upper else {"Joints": [], "Position": [], "Orientation": []}
evaluating_position = {"Position": [], "Distance": [], "Angle": [], "Time": []}
evaluating_transform = None if lower == upper else {"Position": [], "Orientation": [], "Distance": [],
"Angle": [], "Time": []}
# Create the training and evaluation data.
for part in [TRAINING_TITLE, EVALUATING_TITLE]:
# Run for the number of instances.
instances = TRAINING if part == TRAINING_TITLE else EVALUATING
for i in range(instances):
# Define random joint values.
joints = []
for bound in bounds:
if bound is None:
joints.append(np.random.uniform(-BOUND, BOUND))
else:
joints.append(np.random.uniform(bound[0], bound[1]))
# Perform a common forwards and inverse kinematics that both sets of data use.
positions, orientations = self.forward_kinematics(lower, upper, joints)
position = positions[-1]
orientation = orientations[-1]
joints, distance, angle, elapsed = self.inverse_kinematics(lower, upper, position)
# Build training data.
if part == TRAINING_TITLE:
# Get the position only inverse kinematics pose.
positions, orientations = self.forward_kinematics(lower, upper, joints)
training_position["Joints"].append(joints)
training_position["Position"].append(positions[-1])
# Get the transform inverse kinematics pose.
if training_transform is not None:
joints, distance, angle, elapsed = self.inverse_kinematics(lower, upper, position,
orientation)
positions, orientations = self.forward_kinematics(lower, upper, joints)
training_transform["Joints"].append(joints)
training_transform["Position"].append(positions[-1])
training_transform["Orientation"].append(orientations[-1])
continue
# Build the evaluating data, starting with the performance of the position only results.
evaluating_position["Position"].append(position)
evaluating_position["Distance"].append(distance)
evaluating_position["Angle"].append(angle)
evaluating_position["Time"].append(elapsed)
# Save the transform results as well.
if evaluating_transform is not None:
joints, distance, angle, elapsed = self.inverse_kinematics(lower, upper, position,
orientation)
evaluating_transform["Position"].append(position)
evaluating_transform["Orientation"].append(orientation)
evaluating_transform["Distance"].append(distance)
evaluating_transform["Angle"].append(angle)
evaluating_transform["Time"].append(elapsed)
# Cache the data.
self.data[lower][upper] = {
TRAINING_TITLE: {POSITION: training_position, TRANSFORM: training_transform},
EVALUATING_TITLE: {POSITION: evaluating_position, TRANSFORM: evaluating_transform}
}
logging.info(f"{self.name} | {lower + 1} to {upper + 1} | Seed = {SEED} | Training = {TRAINING} | "
f"Evaluating = {EVALUATING} | Data generated.")
# Save the newly generated data.
os.makedirs(self.info, exist_ok=True)
df = pd.DataFrame(self.data)
df.to_json(path, orient="records", lines=True, double_precision=15)
# Reload the data to ensure consistent values.
df = pd.read_json(path, orient="records", lines=True)
self.data = df.to_dict(orient="dict")
logging.info(f"{self.name}| Seed = {SEED} | Training = {TRAINING} | Evaluating = {EVALUATING} | Generated "
f"data saved.")
self.save_results()
def get_data(self, lower: int = 0, upper: int = -1, training: bool = True, orientation: bool = False) -> list:
"""
Get data to use for training or evaluation.
:param lower: The starting joint.
:param upper: The ending joint.
:param training: If this is training data or evaluating data.
:param orientation: If this data cares about the orientation or not.
:return: The training or evaluation data as a list of dicts.
"""
# Nothing to do if the robot is not valid.
if not self.is_valid():
logging.error(f"{self.name} | Get Data | Robot not configured.")
return []
# Nothing to do if this chain is not valid.
lower, upper = self.validate_lower_upper(lower, upper)
if self.chains[lower][upper] is None:
logging.error(f"{self.name} | {lower + 1} to {upper + 1} | Get Data | Chain not valid.")
return []
# Get the portion of data requested.
category = TRAINING_TITLE if training else EVALUATING_TITLE
pose = TRANSFORM if orientation else POSITION
data = self.data[lower][upper][category][pose]
# If there is no data loaded for this, there is nothing to get.
if data is None:
logging.error(f"{self.name} | {lower + 1} to {upper + 1} | Get Data | No data.")
return []
# Get all instances in a list.
values = []
total = 0
for title in data:
amount = len(data[title])
if amount > total:
total = amount
for i in range(total):
value = {}
for title in data:
value[title] = data[title][i]
values.append(value)
return values
def details(self, lower: int = 0, upper: int = -1) -> (str, int, int, int, bool, bool):
"""
Get the details of a kinematic chain.
:param lower: The starting joint.
:param upper: The ending joint.
:return: A formatted table of the chain, the number of revolute joints, the number of prismatic joints, the
number of fixed links, if the chain has a dedicated TCP, and if there are limits.
"""
# If not valid, there is nothing to display.
if not self.is_valid():
logging.error(f"{self.name} | Details | Robot not configured.")
return "", 0, 0, 0, False, False
# Get all values to perform.
lower, upper = self.validate_lower_upper(lower, upper)
chain = self.chains[lower][upper]
if chain is None:
logging.error(f"{self.name} | {lower + 1} to {upper + 1} | Details | Chain not valid.")
return "", 0, 0, 0, False, False
total = len(chain.links)
# Define the headers which we will for sure have.
headers = ["Link", "Position", "Orientation"]
# Count the numbers of each type of link.
revolute = 0
prismatic = 0
fixed = 0
tcp = False
limits = False
for i in range(total):
link = chain.links[i]
# If this is the TCP, we are at the end so stop.
if link.name == "TCP":
tcp = True
break
# Determine the link type.
if link.has_rotation:
revolute += 1
elif link.has_translation:
prismatic += 1
else:
fixed += 1
# Determine if this link has bounds.
if link.bounds is not None and link.bounds != (-np.inf, np.inf):
limits = True
# If there are revolute joints, we need to display them.
if revolute > 0:
headers.append("Axis")
# If there are prismatic joints, we need to display them.
if prismatic > 0:
headers.append("Translation")
# If there are limits, we need to display them.
if limits:
headers.append("Limits")
# Build the table data.
data = []
for i in range(total):
link = chain.links[i]
# We need the name which already has the joint type, position, and orientation.
details = [link.name, neat(link.origin_translation), neat(link.origin_orientation)]
# Display the rotational axis if this is a revolute joint.
if revolute > 0:
if link.rotation is None:
details.append("")
else:
details.append(get_direction_details(link.rotation))
# Display the translational axis if this is a prismatic joint.
if prismatic > 0:
if link.translation is None:
details.append("")
else:
details.append(get_direction_details(link.translation))
# Display limits if this has any.
if limits:
if link.joint_type == "fixed" or link.bounds is None or link.bounds == (-np.inf, np.inf):
details.append("")
else:
details.append(neat(link.bounds))
data.append(details)
# Return all details.
return tabulate(data, headers, tablefmt="presto"), revolute, prismatic, fixed, tcp, limits
def prepare_llm(self, lower: int = 0, upper: int = -1, orientation: bool = False, additional: str = "") -> str:
"""
Prepare information about the chain for a LLM.
:param lower: The starting joint.
:param upper: The ending joint.
:param orientation: If orientation is being solved for.
:param additional: Any additional instructions to be inserted.
:return: The formatted prompt.
"""
# If not valid, there is nothing to prepare for.
if not self.is_valid():
logging.error(f"{self.name} | Prepare LLM | Robot not configured.")
return ""
# Get all values to perform.
lower, upper = self.validate_lower_upper(lower, upper)
table, revolute, prismatic, fixed, has_tcp, limits = self.details(lower, upper)
dof = revolute + fixed
# Nothing to prepare to solve for if there are no degrees-of-freedom.
if dof < 1:
logging.error(f"{self.name} | {lower + 1} to {upper + 1} | Prepare LLM | No degrees of freedom.")
return ""
if dof < 2 and not has_tcp:
logging.error(f"{self.name} | {lower + 1} to {upper + 1} | Prepare LLM | Only one link and no TCP.")
return ""
# If there is only a single degree-of-freedom, the position solution is the same as the whole transform.
if dof < 2:
orientation = False
# Build the prompt.
s = ("<INSTRUCTIONS>\nYou are tasked with producing a closed-form analytical solution for the inverse "
f"kinematics of the {dof} degree{'s' if dof > 1 else ''}-of-freedom serial manipulator solving for the "
f"position{' and orientation' if orientation else ''} of the {'TCP' if has_tcp else 'last link'} as "
'detailed in the "DETAILS" section by completing the Python function provided in the "CODE" section. The '
'"Position" and "Orientation" columns represent link coordinates in local space relative to their parent '
'link. The positions are from the "xyz" attribute and the orientations are the "rpy" attribute from each '
'link\'s "origin" element parsed from the URDF.')
if revolute > 0:
s += (' The "Axis" column in the table represents the rotational axis of the revolute '
f"link{'s' if revolute > 1 else ''}; return {'their values' if revolute > 1 else 'the value'} in "
"radians")
if limits:
s += f" and {'their' if revolute > 1 else 'the'} limits are in radians"
s += "."
if prismatic > 0:
s += (' The "Translation" column in the table represents the movement axis of the prismatic '
f"link{'s' if prismatic > 1 else ''}.")
if fixed > 0:
s += (f" The fixed link{'s do' if fixed > 1 else ' does'} not have any movement; do not return anything "
f"for these links.")
s += (" Do not write any code to run or test the method, as this will be handled for you. Assume all targets "
"given as inputs to the method will be reachable, and as such do not write code to check if the target is"
" reachable. You may use any methods included in Python, NumPy, and SymPy to write your solution except "
f"for any optimization methods.{additional}\n</INSTRUCTIONS>\n<DETAILS>\n{table}\n</DETAILS>\n<CODE>\n"
"def inverse_kinematics(p: tuple[float, float, float]")
if orientation:
s += ", r: tuple[float, float, float]"
reach = ' and orientation "r"' if orientation else ""
if dof > 1:
ret = "tuple[float"
for i in range(1, dof):
ret += ", float"
ret += "]"
ret_param = "A list of the values to set the links"
else:
ret = "float"
ret_param = "The value to set the link"
s += (f') -> {ret}:\n """\n Gets the joint values needed to reach position "p"{reach}.\n :param p: The'
f" position to reach in the form [x, y, z].")
if orientation:
s += "\n :param r: The orientation to reach in radians in the form [x, y, z]."
s += f'\n :return: {ret_param} to for reaching position "p"{reach}.\n """\n</CODE>'
logging.info(f"{self.name} | {lower + 1} to {upper + 1} | Prompt prepared.")
return s
def forward_kinematics(self, lower: int = 0, upper: int = -1, joints: list[float] or None = None,
plot: bool = False, width: float = 10, height: float = 10,
target: list[float] or None = None) -> (list[list[float]], list[list[float]]):
"""
Perform forward kinematics.
:param lower: The starting joint.
:param upper: The ending joint.
:param joints: Values to set the joints to.
:param plot: If the result should be plotted.
:param width: The width to plot.
:param height: The height to plot.
:param target: The target to display in the plot.
:return: The positions and orientations of all links from the forward kinematics.
"""
# Ensure we can perform forward kinematics.
if not self.is_valid():
logging.error(f"{self.name} | Forward Kinematics | Robot not configured.")
return [0, 0, 0], [0, 0, 0]
# Get all values to perform.
lower, upper = self.validate_lower_upper(lower, upper)
chain = self.chains[lower][upper]
if chain is None:
logging.error(f"{self.name} | {lower + 1} to {upper + 1} | Forward Kinematics | Chain not valid.")
return [0, 0, 0], [0, 0, 0]
total = len(chain.links)
# Set the joints.
values = [0] * total
index = 0
last = 0 if joints is None else len(joints)
controlled = []
for i in range(total):
# Keep fixed joints at zero.
if chain.links[i].joint_type == "fixed":
continue
# If joint values were passed, set the joint value.
if index < last:
# noinspection PyTypeChecker
values[i] = float(joints[index])
index += 1
# Otherwise, if not passed and there are bounds, set the midpoint.
elif chain.links[i].bounds is not None:
values[i] = np.average(chain.links[i].bounds)
controlled.append(values[i])
# Perform forward kinematics.
try:
links = chain.forward_kinematics(values, True)
except Exception as e:
logging.info(f"{self.name} | {lower + 1} to {upper + 1} | Forward kinematics | Joints = {controlled} | "
f"Forward kinematics failed; using zeros instead: {e}")
for i in range(total):
values[i] = 0
links = chain.forward_kinematics(values, True)
# Get the positions and orientations of each link.
positions = []
orientations = []
for forward in links:
positions.append(list(forward[:3, 3]))
orientations.append(list(Rotation.from_matrix(forward[:3, :3]).as_euler("xyz")))
# Plot if we should.
if plot:
fig, ax = plot_utils.init_3d_figure()
fig.set_size_inches(abs(width), abs(height))
# If a target to display was passed, display it, otherwise display the end position.
chain.plot(values, ax, positions[-1] if target is None else target)
plt.title(chain.name)
plt.tight_layout()
plt.show()
logging.debug(f"{self.name} | {lower + 1} to {upper + 1} | Forward kinematics | Joints = {controlled} | "
f"Position = {positions[-1]} | Orientation = {orientations[-1]}")
return positions, orientations
def inverse_kinematics(self, lower: int = 0, upper: int = -1, position: list[float] or None = None,
orientation: list[float] or None = None, plot: bool = False, width: float = 10,
height: float = 10) -> (list[float], float, float, float):
"""
Perform inverse kinematics.
:param lower: The starting joint.
:param upper: The ending joint.
:param position: The position to solve for.
:param orientation: The orientation to solve for.
:param plot: If the result should be plotted.
:param width: The width to plot.
:param height: The height to plot.
:return: The solution joints, positional error, rotational error, and solving time.
"""
# Ensure we can perform inverse kinematics.
if not self.is_valid():
logging.error(f"{self.name} | Inverse Kinematics | Robot not configured.")
return [], np.inf, np.inf, np.inf
# Set the joints to start at the midpoints.
lower, upper = self.validate_lower_upper(lower, upper)
if position is None:
logging.warning(f"{self.name} | {lower + 1} to {upper + 1} | Inverse Kinematics | No target position was "
f"passed, solving for [0, 0, 0].")
position = [0, 0, 0]
# No point in solving for orientation when it is just one joint.
if lower == upper:
orientation = None
chain = self.chains[lower][upper]
if chain is None:
logging.error(f"{self.name} | {lower + 1} to {upper + 1} | Inverse Kinematics | Chain not valid.")
return [], np.inf, np.inf, np.inf
total = len(chain.links)
values = [0] * total
for i in range(total):
if chain.links[i].joint_type != "fixed" and chain.links[i].bounds is not None:
values[i] = np.average(chain.links[i].bounds)
# Set the target pose.
target = np.eye(4)
if orientation is not None:
target[:3, :3] = Rotation.from_euler("xyz", orientation).as_matrix()
target[:3, 3] = position
# Solve the inverse kinematics.
start_time = time.perf_counter()
values = chain.inverse_kinematics_frame(target, orientation_mode=None if orientation is None else "all",
initial_position=values)
elapsed = time.perf_counter() - start_time
# Get the actual joint values, ignoring fixed links.
solution = []
for i in range(total):
if chain.links[i].joint_type != "fixed":
solution.append(values[i])
# Get the reached position and orientations.
true_positions, true_orientations = self.forward_kinematics(lower, upper, solution)
true_position = true_positions[-1]
true_orientation = true_orientations[-1]
# Get the position error.
distance = difference_distance(position, true_position)
# Get the orientation error if it was being solved for.
angle = 0 if orientation is None else difference_angle(orientation, true_orientation)
# Plot if we should.
if plot:
fig, ax = plot_utils.init_3d_figure()
fig.set_size_inches(abs(width), abs(height))
# Show the goal position that should have been reached.
chain.plot(values, ax, position)
plt.title(chain.name)
plt.tight_layout()
plt.show()
if orientation is not None:
logging.debug(f"{self.name} | {lower + 1} to {upper + 1} | Inverse Kinematics | Target Position = "
f"{position} | Reached Position = {true_position} | Position Error = {distance} | Target "
f"Orientation = {orientation} | Reached Orientation = {true_orientation} | Orientation Error "
f"= {angle} | Solution = {solution} | Time = {elapsed} seconds")
else:
logging.debug(f"{self.name} | {lower + 1} to {upper + 1} | Inverse Kinematics | Target = {position} | "
f"Reached = {true_position} | Error = {distance} | Solution = {solution} | Time = {elapsed} "
"seconds")
return solution, distance, angle, elapsed
def is_valid(self) -> bool:
"""
Ensure the robot is valid.
:return: True if the robot is valid, false otherwise.
"""
return self.chains is not None
def validate_lower_upper(self, lower: int = 0, upper: int = -1) -> (int, int):
"""
Validate the lower and upper joints to perform on.
:param lower:
:param upper:
:return:
"""
# If no upper value was passed, or it is more than there are joints, use the last joint.
if upper < 0 or upper >= self.joints:
upper = self.joints - 1
# If no lower value was passed, use the first joint.
if lower < 0:
lower = 0
# Ensure the lower value is at most equal to the upper value for a single joint chain.
elif lower > upper:
lower = upper
# Return the updated lower and upper values.
return lower, upper
def evaluate(self) -> None:
"""
Get the results of individual solvers for this robot together.
:return: Nothing.
"""
# Nothing to evaluate if not valid.