-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathTest_attention.py
304 lines (247 loc) · 10.7 KB
/
Test_attention.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
import torch
import heapq
import os
import sys
import torch.nn as nn
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
from torch.nn.parameter import Parameter
import glob
from pathlib import Path
import random
import pandas as pd
import nltk
import collections
import math
import time
import re
import pickle
from gensim.models.keyedvectors import KeyedVectors
import fnmatch
import codecs
import torch.nn as nn
import torch.autograd as autograd
import torch.nn.functional as F
import torch.nn.init as weight_init
import gc
import operator
import torch.nn.parameter as Parameter
import torch.optim as optim
import multiprocessing
from sklearn import metrics
from nltk.tokenize import sent_tokenize
from gensim import models
from nltk.corpus import stopwords
from sklearn.metrics import average_precision_score
from nltk.tokenize import sent_tokenize
from nltk.tokenize import word_tokenize
from gensim import models
from nltk.corpus import stopwords
# In[2]:
# use_cuda = torch.cuda.is_available()
# torch.backends.cudnn.enabled = True
# gpu = 3
# print(use_cuda)
directory = "/scratchd/home/swayambhu/Time_Stamping/"
# test_folder = "/scratchd/home/swayambhu/Time_Stamping/Test"
# folder = "/scratchd/home/swayambhu/Text_Data/"
container_directory = "/scratchd/home/swayambhu/Time_Stamping/List_of_Documents/"
test_folder = sys.argv[1]
class DocumentContainer(object):
def __init__(self, sentences, label):
self.sentences = sentences
self.label = label
# In[5]:
class BatchContainer(object):
def __init__(self, batch):
self.batch = batch
# In[6]:
def type_cast_int(input):
return Variable(torch.from_numpy(np.asarray(input, dtype='int32')).long())
# In[7]:
def type_cast_float(input):
return Variable(torch.from_numpy(np.asarray(input, dtype='float')).long())
class getEmbeddings(nn.Module):
def __init__(self, w2v_array, w2vlength, embedding_length):
super(getEmbeddings, self).__init__()
self.word_embedding = nn.Embedding(w2vlength, embedding_length, padding_idx = 0)
self.word_embedding.weight.data.copy_(torch.from_numpy(w2v_array)) ##initializing the embeddings with our own word2vec
def forward(self, x):
word_embed = self.word_embedding(x)
return word_embed
## this layer will take the index as input and give the word vectors as output
# In[9]:
class CNNwithPool(nn.Module):
def __init__(self, cnn_layers, kernel_size0, kernel_size1, kernel_size2):
super(CNNwithPool, self).__init__()
self.cnn0 = nn.Conv2d(1, cnn_layers, kernel_size0,stride = 1)
self.cnn0.bias.data.copy_(weight_init.constant(self.cnn0.bias.data, 0.))
# self.dropout1 = nn.Dropout(p=0.2)
self.cnn1 = nn.Conv2d(1, cnn_layers, kernel_size1,stride = 1)
self.cnn1.bias.data.copy_(weight_init.constant(self.cnn1.bias.data, 0.))
# self.dropout2 = nn.Dropout(p=0.2)
# self.cnn2 = nn.Conv2d(1, cnn_layers, kernel_size2,stride = 1)
# self.cnn2.bias.data.copy_(weight_init.constant(self.cnn2.bias.data, 0.))
# self.dropout3 = nn.Dropout(p=0.2)
def forward(self, x):
cn0 = self.cnn0(x)
max_pool_size0 = cn0.size(2)
pooled_list0 = F.max_pool2d(cn0, (max_pool_size0, 1))
cn1 = self.cnn1(x)
max_pool_size1 = cn1.size(2)
pooled_list1 = F.max_pool2d(cn1, (max_pool_size1, 1))
# cn2 = self.dropout3(self.cnn2(x))
# print(cn.size())
# print(cn2.size())
# cn_res = torch.cat((cn, cn2), 1)
# max_pool_size2 = cn2.size(2)
# pooled_list2 = F.max_pool2d(cn2, (max_pool_size2, 1))
# temp = torch.cat((pooled_list0, pooled_list1), 1)
# print(pooled_list1.size())
# print(pooled_list2.size())
out = torch.cat((pooled_list0 ,pooled_list1), 1)
# print(pooled_list0.size() ,pooled_list1.size(), pooled_list2.size(), out.size())
# print(out.size())
return out
# In[10]:
class SentenceAttention(nn.Module):
def __init__(self, embedding_size):
super(SentenceAttention,self).__init__()
self.embedding_size = embedding_size
self.relationMatrix = nn.Linear(self.embedding_size, self.embedding_size, bias = False)
self.relationVector = nn.Linear(self.embedding_size,1, bias = False)
def forward(self, x, document_index):
out = []
input_dim = x.dim()
sentence_embedding_size = x.size(1)
for index, start_end in enumerate(document_index):
# print(start_end)
bag = x[start_end[0] : start_end[1]]
attention_values = self.relationVector(self.relationMatrix(bag))
keep_attention = F.softmax(attention_values.view((-1,))).view((bag.size(0),1))
attention_values_softmax = F.softmax(attention_values.view((-1,))).view((bag.size(0),1)).expand(int(start_end[1] - start_end[0]), sentence_embedding_size)
sentence_vector = attention_values_softmax*bag
final_sentence_vector = torch.sum(sentence_vector, 0)
out.append(final_sentence_vector)
out_concat = torch.cat(out, 0)
return out_concat, keep_attention
# In[11]:
class ThreeLayerNet(nn.Module):
def __init__(self, D_in, D_h1, D_h2, D_out):
super(ThreeLayerNet, self).__init__()
self.linear1 = nn.Linear(D_in, D_h1, bias = False)
self.tanh1 = nn.ReLU()
self.dropout1 = nn.Dropout(p=0.2)
self.linear2 = nn.Linear(D_h1, D_h2, bias = False)
self.dropout2 = nn.Dropout(p=0.2)
self.tanh2 = nn.ReLU()
self.linear3 = nn.Linear(D_h2, D_out, bias = False)
# self.linear4 = nn.Linear(30, D_out, bias = False)
def forward(self, x):
out_1 = self.dropout1(self.tanh1(self.linear1(x)))
out_2 = self.dropout2(self.tanh2(self.linear2(out_1)))
out_3 = self.linear3(out_2)
# out_4 = self.linear4(out_3)
return out_3
# In[12]:
class final(nn.Module):
def __init__(self, w2v_array, w2v_length, embedding_length, cnn_layer, kernel_size0, kernel_size1, kernel_size2, num_of_class, hidden1, hidden2):
super(final, self).__init__()
self.w2v_array = w2v_array
self.w2v_length = w2v_length
self.embedding_length = embedding_length
self.kernel_size0 = kernel_size0
self.kernel_size1 = kernel_size1
self.kernel_size2 = kernel_size2
self.cnn_layer = cnn_layer
self.embedding = getEmbeddings(self.w2v_array, self.w2v_length, self.embedding_length)
self.cnn = CNNwithPool(self.cnn_layer,self.kernel_size0, self.kernel_size1, self.kernel_size2)
self.attention = SentenceAttention(2*self.cnn_layer)
self.num_of_class = num_of_class
self.D_h1 = hidden1
self.D_h2 = hidden2
self.NeuralNet = ThreeLayerNet(2*self.cnn_layer, self.D_h1, self.D_h2, self.num_of_class)
def forward(self, x, document_index):
embeddings = self.embedding(x).unsqueeze(1)
cn = self.cnn(embeddings).view((embeddings.size(0), -1))
attention, given_attention = self.attention(cn, document_index)
final_output = self.NeuralNet(attention)
return final_output, given_attention
w2varray = pickle.load(open(directory+'w2varray.p',"rb"))
w2varray = np.asarray(w2varray)
num_of_class = 12
cnn_layer = 200
kernel_size0 = (2,len(w2varray[0]))
kernel_size1 = (3,len(w2varray[0]))
kernel_size2 = (4,len(w2varray[0]))
hidden1 = 512
hidden2 = 128
batch_size = 16
epoch = 5
test_model = final(w2v_array = w2varray, w2v_length = len(w2varray), embedding_length = len(w2varray[0]), cnn_layer = cnn_layer, kernel_size0 = kernel_size0, kernel_size1 = kernel_size1, kernel_size2 = kernel_size2, num_of_class = num_of_class, hidden1 = hidden1, hidden2 = hidden2)
vocabulary = pickle.load(open(directory+'vocabulary.p',"rb"))
# print(test_model)
checkpoint = torch.load(directory+"Models/model_"+str(epoch), map_location=lambda storage, loc: storage)
test_model.load_state_dict(checkpoint['state_dict'])
def get_test_file_path(test_folder, vocabulary, max_sentence_length):
save_as_list_of_DocumentContainer = []
for root, dirs, end in os.walk(test_folder):
for file in end:
if file.startswith('.'):
continue
get_path = os.path.join(root, file)
save_year = int(file.split('.')[0].split('_')[2][0:4]) - 2000
save_month = int(file.split('.')[0].split('_')[2][4:6])
with open(get_path, "r", encoding='utf-8', errors='ignore') as inputFile:
new_array = []
content = ""
for lines in inputFile:
sent_tokenize_list = sent_tokenize(lines)
# print(sent_tokenize_list[0])
for line in sent_tokenize_list:
content = " ".join(line.split("\t")[0:]) + "\n"
content = content.lower().strip()
words = word_tokenize(content)
filtered_words = [word for word in words if word not in stopwords.words('english')]
sentence_vector = np.zeros(max_sentence_length)
index = 0
for word in filtered_words:
if word in vocabulary and index < max_sentence_length:
sentence_vector[index] = vocabulary[word]
index = index + 1
sentence_vector = np.asarray(sentence_vector)
new_array.append(sentence_vector)
new_array = np.asarray(new_array)
document_index = []
doc_begin = 0
doc_end = doc_begin + len(new_array)
tup = (doc_begin, doc_end)
document_index.append(tup)
input_array = np.asarray(new_array)
input_array = type_cast_float(input_array)
result_batch, attention_given = test_model(input_array, document_index)
result_cpu = result_batch.cpu()
result_cpu = result_cpu.data.numpy()
attention_cpu = attention_given.cpu()
attention_cpu = attention_cpu.data.numpy()
for i in range(len(attention_given)):
print(attention_cpu[i], sent_tokenize_list[i])
print("Score for every month - ", result_cpu)
print("Actual Class - ", save_year*12 + save_month - 1)
print("#######################################################")
# print(result_batch)
# print(doc_end, new_array)
# get_path = os.path.join(root, file)
# save_year = int(file.split('.')[0].split('_')[2][0:4]) - 2000
# save_month = int(file.split('.')[0].split('_')[2][4:6])
# with open(get_path, "r", encoding='utf-8', errors='ignore') as inputFile:
# for lines in inputFile:
# sent_tokenize_list = sent_tokenize(lines)
# for line in sent_tokenize_list:
# content = " ".join(line.split("\t")[0:]) + "\n"
# content = content.lower().strip()
# words = word_tokenize(content)
list_of_train_docs = pickle.load(open(container_directory + "list_of_documents_0.p", "rb"))
max_sentence_length = len(list_of_train_docs[0].sentences[0])
test_file_path = get_test_file_path(test_folder, vocabulary, max_sentence_length)