-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathloader_text.py
56 lines (48 loc) · 1.84 KB
/
loader_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import pickle
import torch
def load_file(filename):
with open(filename, 'rb') as filehandle:
ret = pickle.load(filehandle)
return ret
class loader_text:
def __init__(self):
self.name="text"
self.require=["tokenizer_roberta"]
def prepare(self,input,opt):
self.text ={
"train":load_file(opt["data_path"] + "train_text"),
"test":load_file(opt["data_path"] + "test_text"),
"valid":load_file(opt["data_path"] + "valid_text")
}
if "len" not in opt:
opt["len"]=100
self.len=opt["len"]
if "pad" not in opt:
opt["pad"]=1
self.pad=opt["pad"]
self.tokenizer_roberta=input[list(input.keys())[0]]
self.text_mask = {
"train":[],
"test":[],
"valid":[]
}
self.text_id = {
"train":[],
"test":[],
"valid":[]
}
for mode in self.text.keys():
for index, text in enumerate(self.text[mode]):
indexed_tokens_for_text = self.tokenizer_roberta(text)['input_ids']
if len(indexed_tokens_for_text) > self.len:
indexed_tokens_for_text=indexed_tokens_for_text[0:self.len]
text_mask=torch.BoolTensor([0]*len(indexed_tokens_for_text)+[1]*(self.len-len(indexed_tokens_for_text)))
indexed_tokens_for_text+=[self.pad]*(self.len-len(indexed_tokens_for_text))
text_id = torch.tensor(indexed_tokens_for_text)
self.text_mask[mode].append(text_mask)
self.text_id[mode].append(text_id)
def get(self,result,mode,index):
result["text_mask"]= self.text_mask[mode][index]
result["text"]=self.text_id[mode][index]
def getlength(self,mode):
return len(self.text[mode])