-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathREADME.bkp
112 lines (99 loc) · 4.02 KB
/
README.bkp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
# Machine-Learning-with-Tensorflow-2
A repository comprising the algorithms of Machine Learning implemented on tensorflow 2 with keras and many other special machine learning libraries. If you find this useful please share and give your valuable insights.
```
├── ComputerVision
│ ├── AutoEncoders
│ │ ├── ContractiveAutoencoder
│ │ ├── ConvolutionalAutoEncoder
│ │ ├── DenoiseAutoEncoder
│ │ ├── SparseAutoEncoder
│ │ ├── StackedAutoEncoder
│ │ ├── VanillaAutoencoder
│ │ └── VariationalAutoEncoder
│ ├── GAN
│ │ ├── ConditionalGan
│ │ ├── CycleGAN
│ │ ├── DeepConvolutionalGAN
│ │ ├── DeepRegretAnalyticGAN
│ │ ├── InitialGAN
│ │ ├── LeastSquareGan
│ │ ├── StarGAN
│ │ ├── SuperResolutionGAN
│ │ ├── WassersteinGAN
│ │ └── WassersteinImprovedGAN
│ ├── ImageClassification
│ │ ├── LargeNetwork
│ │ │ ├── AlexNet
│ │ │ ├── CapsuleNetwork
│ │ │ ├── DenseNet
│ │ │ ├── HighwayNet
│ │ │ ├── InceptionNet
│ │ │ │ ├── InceptionV1
│ │ │ │ └── InceptionV2
│ │ │ ├── NetworkInNetwork
│ │ │ ├── ResidualAttentionNet
│ │ │ ├── ResNet
│ │ │ ├── ResNext
│ │ │ ├── SENet
│ │ │ ├── VGGNet
│ │ │ └── VisionTransformer
│ │ ├── Robustness
│ │ │ ├── AdversarialSaliencyMaps
│ │ │ ├── BlackBoxAttacks
│ │ │ ├── FastGradientSignMethod
│ │ │ └── IterativeLeastLikelyMethod
│ │ └── SmallNetwork
│ │ ├── DeepCompression
│ │ ├── FractalNet
│ │ ├── KnowledgeDistillation
│ │ ├── Lenet5
│ │ ├── MLP-Mixer
│ │ ├── MobileNet
│ │ ├── PolyNet
│ │ ├── ShuffleNet
│ │ ├── SqueezeNet
│ │ ├── XceptionNet
│ │ ├── XNOR-Net
│ │ └── ZFNet
│ └── Misc
│ ├── GeneticCNN
│ └── StyleTransfer
├── Machine_Learning_Algorithms
│ ├── KNearestNeighbour
│ ├── LinearRegression
│ ├── LogisticRegression
│ ├── NaiveBayesClassifier
│ └── SupportVectorMachine
└── Miscellaneous
├── EmpiricalRiskMinimization
├── GaussianCDF
├── GradientAccumulation
├── Initialization_and_gradient_test
└── Regularization_with_NM_optimization
```
Before trying, follow these steps:
Install the neccessary libraries and modules
- Activate your *virtualenv*
- Run the following command in your terminal(LINUX) or cmd(WINDOWS)
### Installation process :
```bash
pip3 install tensorflow[and-cuda] #if you've an nvidia-gpu with cuda support
pip3 install pandas
pip3 install numpy
pip3 install matplotlib
pip3 install sklearn
pip3 install tensorflow_probability
```
## Fire up your terminal/cmd
```bash
sh setup.sh
```
# 🤖 Linux or Windows:
```bash
python3 <file_name>.py
```
# Contributions
Contributions are welcome! If you have implemented a new insights or have improvements to existing implementations, feel free to submit a pull request. Please follow the contribution guidelines outlined in the repository.
# License
This project is licensed under the GNU General Public License v3.0 - see the LICENSE file for details.
Happy generating!