-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathchap9.tex
1085 lines (998 loc) · 64.7 KB
/
chap9.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Normally hyperbolic invariant manifolds}
The objective of this chapter is to extend the theory of low-dimensional stable and unstable manifolds to a general, higher-dimensional setting. The focus will lie on invariant manifolds rather than individual trajectories as invariant manifolds are more observable, more influential, and more robust. We begin with an example.
\begin{ex}[Dynamics near a saddle-type fixed point]
The difference between the behavior of individual trajectories and of the invariant manifolds is depicted in Fig. \ref{fig:individual_trajectory}. The idea being that under a diffeomorphic transformation of the invariant manifolds of the linear system into those of the nonlinear system, a trajectory starting from a point $x_0$ may be drastically different even if the dynamics remain topologically conjugate to each other. I.e. individual trajectories are sensitive with respect to initial conditions and changes in parameters, meanwhile robust invariant manifolds persist (perturb smoothly).
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/1individual_trajectory.pdf}
\caption{The dynamics near a saddle-type fixed point demonstrating the sensitive dependence of individual trajectories on initial conditions and changes in parameters, and the robust nature of invariant manifolds.}
\label{fig:individual_trajectory}
\end{figure}
\end{ex}
Thus our examination now turns to determining which invariant manifolds are persistent. In order to understand this, first an intermezzo in differentiable manifolds is necessary.
\section{A crash course on differentiable manifolds}
\begin{definition}
A set $M\subset \mathbb{R}^{n}$ is a \emph{$k$-dimensional differentiable manifold}, if it is \underline{locally} diffeomorphic to $\mathbb{R}^{k}$, i.e. for every $x\in M$ there exists an open (in $M$) neighborhood $V\subset M $, such that $V$ is diffeomorphic to an open set $U \subset \mathbb{R}^{k}$. The diffeomorphism is called the \emph{local parameterization} as is denoted $\Phi:U \to V$. Its smooth inverse is the \emph{local coordinate system} $\Phi^{-1}:V \to U$. These are illustrated in Fig. \ref{fig:diffble_mfd}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/2diffble_mfd.pdf}
\caption{The differentiable manifold $M$ is given in blue in the left. The red sphere $W$ is an open ball in $\mathbb{R}^{n}$, intersecting this with $M$ yields and open (in $M$) neighborhood $V=W \cap M$ of $x $. The smooth diffeomorphism $\Phi $ transforms $U$ into the open set $U$ of $\mathbb{R}^{k}$.}
\label{fig:diffble_mfd}
\end{figure}
\end{definition}
The intuitive meaning of a $k$-dimensional manifold is a set which locally looks like $\mathbb{R}^{k}$.
\begin{definition}
For a set $M\subset \mathbb{R}^{n}$ and an open set $U\subset \mathbb{R}^{n}$, the set $M\cap U$ is called \emph{relatively open} in $M$.
\end{definition}
\begin{ex}[The circle is a 1-dimensional manifold]
The circle $\mathcal{S}^{1}$ is a 1-dimensional differentiable manifold. To see define the four open subsets $V_i$ of $\mathcal{S}^{1}$ as open semicircles which are each shifted by $\frac{i \pi }{2} $ for $i=1,2,3,4$. Then $\mathcal{S}^{1} = \bigcup_{i=1}^{4}V_i$. These are drawn in Fig. \ref{fig:s1_subsets}. Any $x\in \mathcal{S}^{1}$ belongs to at least one of the $V_i$ due to the previous equality. Furthermore each $V_i$ is diffeomorphic to $U=(-1,1)$ which is open in $\mathbb{R}^{1}$ via the diffeomorphisms
\begin{subequations}
\begin{align}
\Phi_1 &=
\begin{pmatrix}
t\\ \sqrt{1-t^2}
\end{pmatrix}
;&&\Phi_2 =
\begin{pmatrix}
t\\ -\sqrt{1-t^2}
\end{pmatrix}
; \\
\Phi_3 &=
\begin{pmatrix}
-\sqrt{1-t^2}\\ t
\end{pmatrix}
;&&\Phi_4 =
\begin{pmatrix}
\sqrt{1-t^2}\\ t
\end{pmatrix}
.
\end{align}
\end{subequations}
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/3s1_subsets.pdf}
\caption{The subsets $V_i$ of $\mathcal{S}^{1} $ which are used to show that the circle is a 1-dimensional manifold.}
\label{fig:s1_subsets}
\end{figure}
There is no global parameterization of $\mathcal{S}^{1}$, but this is not needed to be a differentiable manifold, and these local parameterizations suffice.
\end{ex}
\begin{ex}[Not all sets are manifolds]
A few examples of sets which are not manifolds.
\begin{enumerate}
\item The figure-eight is not a manifold, as for any point except the central intersection, there exists a local neighborhood diffeomorphic to $\mathbb{R}^{1}$, however at this central intersection, no open neighborhood exists which is diffeomorphic to $\mathbb{R}^{1}$. This is depicted in Fig. \ref{fig:figure_eight}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/3b_figure_eight.pdf}
\caption{The figure-eight with the critical intersection which prevents it from being a manifold.}
\label{fig:figure_eight}
\end{figure}
\item A dense orbit on a 2-dimensional torus is not a manifold, as around any point infinitely many adjacent trajectories exist, but do not form a plane (there is a distance between two instances of the trajectory). Hence any neighborhood around any point cannot be hyperbolic to $\mathbb{R}^{2}$ or $\mathbb{R}^{1}$. Such a neighborhood is illustrated in Fig. \ref{fig:dense_orbit_mfd}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/4dense_orbits_mfd.pdf}
\caption{A depiction of a local neighborhood of a point in a dense orbit of the torus.}
\label{fig:dense_orbit_mfd}
\end{figure}
\item The union of a semi-infinite spiral and semi-open (left closed, right open) interval do not form a differentiable manifold. For this set, at the intersections of the two sets, points with neighborhoods as in the figure eight appear.
\end{enumerate}
\end{ex}
We can construct manifolds very easily, for instance by taking any smooth function $f:X \to Y$, the graph of $f$ namely the set $ \textrm{graph} (f)=\{(x,y):\ x\in X,\ y=f(x)\}$ is a differentiable manifold.
\begin{definition}
For two manifolds $X$ and $Z$, each subsets of $\mathbb{R}^{n}$, with $X \subset Z$ we call $X$ a \emph{submanifold} of $Z$.
\end{definition}
An example of a submanifold would be $X=\mathcal{S}^{1}\subset Z = \mathcal{S}^{2} \subset \mathbb{R}^{3}$. We say $\mathcal{S}^{1}$ is a 1-dimensional submanifold of the 2-dimension manifold $Z$.
\begin{definition}
A manifold $M\subset \mathbb{R}^{n}$ is a \emph{$k$-dimensional manifold with boundary}, if it is locally diffeomorphic to a relatively open set in the non-negative half-space $H^{k}=\{x\in \mathbb{R}^k: x_1 \geq 0\} \subset \mathbb{R}^{k}$. The \emph{boundary of $M$}, denoted $\partial M$ is always mapped into $\partial H^{k}$ under any parameterization, and is a $k-1$-dimensional manifold. Such a manifold and its parameterization are illustrated in Fig. \ref{fig:bndry_mfd_def}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/5bndry_mfd_def.pdf}
\caption{An illustration of the manifold with boundary $M$ and a parameterization mapping its boundary to $\partial H^{k}$.}
\label{fig:bndry_mfd_def}
\end{figure}
\end{definition}
Closed intervals, closed cyclinders, and closed hollow spheres are all manifolds with boundaries, however it is not always the case that simply taking the closure of a manifold yields a manifold with boundary. For instance the interior of a rectangle is a manifold (using the identity as a parameterization), however as the corners are not smooth the closure is not a manifold.
\begin{definition}
Given a $k$-dimensional manifold $M\subset \mathbb{R}^{n}$ with the local parameterization at $x$ given by $\Phi:: U\subset \mathbb{R}^k \to V\subset M \subset \mathbb{R}^n$ (assume for simplicity that $\Phi(0)=x\in V$), the \emph{tangent space of the manifold} is then defined as
\begin{align}
\boxed{
T_{x}M= \textrm{Range} [D\Phi(0)].
}
\end{align}
The intuition as to why this is called the tangent space is show in Fig. \ref{fig:tangent_space_def}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/6tangent_space_def.pdf}
\caption{The tangent space of a manifold $M$. The map $D\Phi(0)$ maps the left image to the plane indicated in the right image.}
\label{fig:tangent_space_def}
\end{figure}
\end{definition}
Note here how the differential is defined
\begin{align}
D \Phi(x)h = \lim_{s \to 0} \frac{\Phi(x + sh) - \Phi(x)}{s}.
\end{align}
Therefore the map $D\Phi(y)$ is a map from the tangent space of $\mathbb{R}^{k}$ at $y$ to the tangent space of $M$ at $\Phi(y)$, i.e. $D\Phi(y): T_{y}\mathbb{R}^{k}\to T_{\Phi(y)}M$.
\begin{remark}[]
Note a few facts about tangent spaces:
\begin{enumerate}
\item Although it appears that $T_{x}M$ depends on the parameterization $\Phi$, it actually does not;
\item The dimension of the tangent space, which is well defined as it is a linear subspace of $\mathbb{R}^{n}$, is equal to the dimension of $M$, namely $k$;
\item A map $f:M\to N$ between manifolds induces a linear mapping between the appropriate tangent spaces of the manifolds. Denoting by $\Phi$ and $\Psi$ the respective local parameterizations, the induced map between parameter spaces is $F= \Psi^{-1} \circ f \circ \Phi$. This is a mapping between linear spaces and $DF$ is well-defined. In turn, this implies that $Df$ is well-defined and by the chain rule is equal to $D\Psi \circ DF \circ D\Phi^{-1}$, therefore it is possible to differentiate mappings between manifolds. Then we have the sought-after mapping between tangent spaces
\begin{align}
Df: T_{x}M \to T_{f(x)}N.
\end{align}
These maps are illustrated in Fig. \ref{fig:induced_tangent_map}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/7induced_tangent_map.pdf}
\caption{The commutative diagram along with the respective spaces illustrated for the induced map between tangent spaces.}
\label{fig:induced_tangent_map}
\end{figure}
\end{enumerate}
\end{remark}
\begin{definition}
The set of all tangent spaces, labelled by their base points is called the \emph{tangent bundle}
\begin{align}
\boxed{
TM = \left\{ (x,v):\ x\in M,\ v\in T_{x}M \right\} = \bigcup_{x\in M}(x, T_{x}M).
}
\end{align}
The tangent bundle is a $2k$-dimensional manifold.
\end{definition}
By labelling tangent vectors with their respective base points, different tangent spaces are separate \emph{fibers} of the tangent bundle. In general $TM \neq M \times \mathbb{R}^{k}$, i.e. the tangent bundle is not a global direct product. In fact, locally, each tangent bundle is trivial (the direct product), this just does not extend globally. However, for $M=\mathcal{S}^{2}$ the tangent bundle is diffeomorphic to $\mathcal{S}^{2} \times \mathbb{R}^{2}$.
\begin{definition}
The \emph{normal space}, unlike the tangent space, depends on the ambient space. For a $k$-dimensional manifold $M$ embedded in $\mathbb{R}^{n}$, the normal space at a point $x$, $N_{x}M$, is the orthogonal complement of the tangent space. For their direct sum it holds, that
\begin{align}
\boxed{
T_{x}M \oplus N_{x}M = T_{x}\mathbb{R}^{n}.
}
\end{align}
Therefore, the dimensional of the normal space is $n-k$. The normal space is drawn in Fig. \ref{fig:normal_space_def}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/8normal_space_def.pdf}
\caption{The normal space of a manifold $M$ at the point $x_0$ along with the tangent space at the same point.}
\label{fig:normal_space_def}
\end{figure}
\end{definition}
\begin{definition}
Analog to the tangent bundle, the \emph{normal bundle} is the collection of normal spaces of the manifold $M$ labelled by their base points
\begin{align}
\boxed{
NM = \left\{ (x,v):\ x\in M,\ v\in N_{x}M \right\}.
}
\end{align}
\end{definition}
By labelling normal vectors with their base points, intersections are avoided as shown in Fig. \ref{fig:normal_vector_intersection}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/9normal_vector_intersection.pdf}
\caption{Intersecting normal vectors, these are avoided by labelling vectors with their base points.}
\label{fig:normal_vector_intersection}
\end{figure}
\begin{definition}
A \emph{subbundle} of the normal bundle is any $x$-dependent family of subspaces of $N_{x}M$, which is smooth in $x$.
\end{definition}
An example of such a subbundle is given in Fig. \ref{fig:subbundle_ex}, where the smooth family of subspaces is given by $S(x)\subset N_{x}M$.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/10subbundle_ex.pdf}
\caption{A subbundle of the manifold $M$, each base point $x\in M$ is a base point of $S(x)$, a fiber of the normal bundle.}
\label{fig:subbundle_ex}
\end{figure}
\newpage
\section{Theory of normally hyperbolic invariant manifolds}
The starting point for the following section will be of an autonomous dynamical system
\begin{align}
\dot{x}=f(x);\quad x \in \mathbb{R}^{n};\quad f\in\mathcal{C}^{r}\ r\geq 1.
\end{align}
Furthermore, let $M_0\subset \mathbb{R}^{n}$ be a $k$-dimensional, compact, $\mathcal{C}^{1}$-manifold with boundary $\partial M_{0}$.
\begin{definition}
The manifold $M_0$ is an \emph{overflowing invariant manifold} if $f(x)$ points strictly outwards of $\partial M_0$. A special case of this is when $\partial M_0= \emptyset$.
\end{definition}
There are three central questions for what happens to this manifold which we will address:
\begin{enumerate}
\item Does it persists (survive smoothly)?
\item Is it stable (what happens to nearby trajectories)?
\item What is the interior structure of the stable/unstable manifolds of $M_0$?
\end{enumerate}
\begin{ex}[]
Consider the system
\begin{align}
\begin{dcases}
\dot{x}= -x(1-x)(1+x) \\
\dot{y} = \alpha y
\end{dcases}
;\quad 0 < \alpha \leq 1.
\end{align}
Now define $M_0$ to be the closed interval $[-1-\varepsilon, 1 + \varepsilon]\times \{0\}$. This manifold is of dimension 1, has nonempty boundary $\{-1-\varepsilon, 1+\varepsilon\}$, is compact, and smooth. At each point in the boundary, $f$ is pointing away from $M_0$. Therefore, $M_0$ is an overflowing invariant manifold. We also have that $W^{S}_{ \textrm{loc}}(M_0)$ is nonempty, meanwhile $W^{U}_{ \textrm{loc} }(M_0)$ is empty. Trajectories of this dynamical system along with $M_0$ and the stable local manifold are depicted in Fig. \ref{fig:overflowing_mfd_ex1}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/11overflowing_mfd_ex1.pdf}
\caption{An illustration of the trajectories of the dynamical system, the overflowing invariant manifold $M_0$, its boundary, and the local stable manifold drawn in green. The fixed points $A_0$, $B_0$, and $C_0$ are also shown.}
\label{fig:overflowing_mfd_ex1}
\end{figure}
Now we may ask if $M_0$ is robust under perturbations (if it persists). For example under the perturbation
\begin{align}
\begin{dcases}
\dot{x} = -x(1-x)(1+x) -\varepsilon y \\
\dot{y} = - \alpha y + \varepsilon x
\end{dcases}
;\quad 0 \leq \varepsilon \ll 1.
\end{align}
The fixed points $A_0$, $B_0$, and $C_0$ are hyperbolic, therefore they persist. In fact $B_0$ does not move at all. The other fixed points move to new perturbed counterparts, i.e. $A_0,C_0 \to A_{\varepsilon}, C_{\varepsilon}$. From the second equation, we see that the y coordinate of the perturbed fixed point becomes $y_\varepsilon= \varepsilon/\alpha x_\varepsilon$. That is, $C_\varepsilon$ moves upwards and $A_\varepsilon$ moves downwards.
At $B_0 = B_{\varepsilon}$ we can linearize to find
\begin{align}
\begin{pmatrix}
\dot{x} \\ \dot{y}
\end{pmatrix}
=
\begin{pmatrix}
-1 & - \varepsilon \\
\varepsilon & -\alpha
\end{pmatrix}
\begin{pmatrix}
x \\ y
\end{pmatrix}
.
\end{align}
Depending on $\alpha $ we differentiate two cases.
\begin{enumerate}
\item $\bm{\alpha =1} $ In this case the eigenvalues split in a vertical fashion, as shown in Fig. \ref{fig:eigv_vertical_split}. The stable node turns into a stable spiral, which, when connected to the perturbed fixed points $A_{\varepsilon}$ and $C_{\varepsilon}$ cannot be diffeomorphic to $M_0$.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/11_5vertical_split.pdf}
\caption{The eigenvalues splitting in a vertical fashion for $\alpha=1$.}
\label{fig:eigv_vertical_split}
\end{figure}
\item $\bm{\alpha<1}$ Now change the perturbation to $\varepsilon^{2}$ such that both fixed points move upwards, the perturbed curve will have a cusp at 0, so we have again no diffeomorphism to $M_0$.
\end{enumerate}
Thus in each case, no smooth transformation to $M_0$ exists and therefore there is no persistence. The perturbed geometries are shown in Fig. \ref{fig:nondiffeo_pertubation}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/11_75alpha_perturbation.pdf}
%\includegraphics[width=0.4\textwidth]{figures/ch9/11_75alpha_one_perturb.png}
%\includegraphics[width=0.4\textwidth]{figures/ch9/11_75alpha_small_perturb.png}
\caption{Left: The geometry for $\alpha=1$. Right: The geometry for $\alpha<1$.}
\label{fig:nondiffeo_pertubation}
\end{figure}
\end{ex}
The reason for the destruction of the manifold here was the normal rate of attraction being less than or equal to the tangential rate of attraction at one point. This can be exemplified as follows.
\begin{ex}[]
Consider the dynamical system
\begin{align}
\begin{dcases}
\dot{x} = -x(1-x)(1+x) + \varepsilon y \\
\dot{y} = - \frac{3}{2} y - \varepsilon x
\end{dcases}
.
\end{align}
This is the specification of the previous example to $\alpha = \frac{3}{2}$. If we linearize at the point $B_0$ for $\varepsilon = 0 $ we find
\begin{align}
\begin{dcases}
\dot{x} = - x \\
\dot{y} = -\frac{3}{2} y
\end{dcases}
.
\end{align}
The solution to the linearized system is
\begin{align}
\begin{dcases}
x(t) = x_0 e^{-t} = x_0 \left(e^{-1} \right)^{t} \\
y(t) = y_0 e^{-\frac{3}{2}t} = y_0 \left(e^{-\frac{3}{2}}\right)^{t}
\end{dcases}
\implies y = y_0 \left(\frac{x}{x_0}\right)^{\frac{3}{2}}. \label{eq9:914}
\end{align}
The eigenvalue constellation and linearized phase portrait, along with the implied nonlinear phase portrait for this system are show in Fig. \ref{fig:alpha_specification}. From \eqref{eq9:914} we see that the phase curves of the system are only $\mathcal{C}^1$ because of the power of $\frac{3}{2}$. In the nonlinear system, this implies that the perturbed manifold $M_\varepsilon$ exists, but is also only $\mathcal{C}^1$-smooth. Thus, the ratio between normal and tangential contraction determines the smoothness of $M_\varepsilon$.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/12alpha_specification.pdf}
% \includegraphics[width=0.27\textwidth]{figures/ch9/12alpha_specification_1.pdf}
% \includegraphics[width=0.27\textwidth]{figures/ch9/12alpha_specification_2.png}
% \includegraphics[width=0.4\textwidth]{figures/ch9/12alpha_specification_3.png}
\caption{Left: The eigenvalue constellation for the linearization around $B_0$ for $\varepsilon=0$. Middle: The linearized phase portrait around $B_0$. Right: The nonlinear phase portrait with the nearby overflowing invariant manifold $M_{\varepsilon}$.}
\label{fig:alpha_specification}
\end{figure}
One can check here that $\dot{y}= (r+\mu )y + \varepsilon x$ would give $\mathcal{C}^{r}$ differentiability for $M_{\varepsilon}$ for $0 \leq \mu \ll 1$. Formally, for $\mu=0 $ we would have $\mathcal{C}^{\infty }$ differentiability, but only for the linear part, and this would not be robust.
\end{ex}
The general challenge is to quantify the growth/contraction rates in the normal and tangential directions, i.e. how do we determine the rates away from fixed points along trajectories.
Recall our setup with the compact, overflowing invariant $\mathcal{C}^{r}$ manifold $M_0 \subset \mathbb{R}^{n}$ of dimension $k$, for $r\geq 1$ and the dynamical system
\begin{align}
\dot{x} = f(x);\quad x \in \mathbb{R}^{n};\quad f\in \mathcal{C}^{r}.
\end{align}
Now consider the \emph{inverse linearized flow map} on the tangent bundle of $\mathbb{R}^{n}$ for some $t\geq 0$
\begin{align}
(F^{-t}, DF^{-t}):\ T\mathbb{R}^{n} \to T\mathbb{R}^{n};\ (p,v) \mapsto \left(F^{-t}(p), DF^{-t}(p)v\right).
\end{align}
This map is depicted in Fig. \ref{fig:inv_lin_flow_map}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/13inv_lin_flow_map.pdf}
\caption{The inverse linearized flow map. We have $q=F^{-t}(p)\in M_0$ and the red arrow on the right is $v_{-t}=DF^{-t}(p)v_0 \in T_{q}M_0$ for $v_0 \in T_{p}M_0$. The map $\Pi_{q}$ is the orthogonal projection onto $N_{q}M_0$.}
\label{fig:inv_lin_flow_map}
\end{figure}
To quantify the rate of normal attraction we define for $w_0 \in N_{p}M_0$, as in Fig. \ref{fig:inv_lin_flow_map}, $w_{-t}\in N_{q}M_0$ to be $\Pi_{q}DF^{-t}(p)w_0 $. If we have repulsion in backward time, $\| w_{-t}\| \gg \| w_0\|$, with an exponential rate, i.e.
\begin{align}
\frac{\|w_0 \|}{\| w_{-t}\|}\sim e^{-\alpha t} = (e^{-\alpha })^{t}; \quad \alpha >0; \quad t \to \infty ,
\end{align}
then the best estimate for such an $e^{-\alpha }$ is
\begin{align}
\boxed{
\nu(p) = \inf \left\{ a \in \mathbb{R}^{+}:\ \lim_{t\to\infty }{\frac{\|w_0\|}{\|w_{-t}\|}}/{a^{t}} = 0,\ \forall w_0 \in N_{p}M_0 \right\}.
}
\end{align}
The $\inf $ is defined as the largest lower bound. The idea behind this, is that for large $a$, the quotient will go to zero, if we start to lower $a$ until this trend changes. We then pick the largest lower bound for this change.
If $e^{-\alpha }=a \sim \nu(p) < 1$ then $M_0$ is exponentially attracting in backward time. Note that the orbit from $p$ will generally not approach a fixed point. Furthermore, $\log(\nu(p))$ will generally not be the eigenvalue of a Jacobian (the linearized flow map at a fixed point).
Next, we would like to quantify the relationship between the normal and tangential rates. If we have
\begin{align}
{\frac{\| w_0 \|}{\|w_{-t}\|}}/{\frac{\|v_0\|}{\|v_{-t}\|}} \sim \frac{e^{-\alpha t}}{e^{-\alpha t \cdot \frac{1}{\rho}}}
\end{align}
for some $\rho \in \mathbb{R}$ and $\alpha >0$ as $t\to \infty $ then define for the best asymptotic estimate for $1/\rho$, define $\sigma(p)$ to be
\begin{align}
\boxed{
\sigma(p) = \inf \left\{ b \in \mathbb{R}:\ \lim_{t\to \infty }\left({\frac{\|w_0\|}{\|w_{-t}\|}} \right) ^{b} /{\frac{\|v_0\|}{\|v_{-t}\|}} = 0,\ \forall w_0 \in N_{p}M_0,\ \forall v_0 \in T_{p}M_0 \right\}.
}
\end{align}
The numbers $\nu(p)$ and $\sigma(p)$ are called {\emph Fenichel-type numbers}. They are sometimes also referred to as Lyapunov-type numbers or sometimes simply Type-numbers. If $\sigma(p) \sim \frac{1}{\rho} < \frac{1}{s}$ for some $s\in \mathbb{Z}^{+}$, then the normal decay to $M_0$ is $s$-times stronger than the tangential compression along $M_0$, at least along the trajectory through $p$.
\begin{remark}[Properties of Fenichel-type numbers]
First, each are constant along trajectories, and dependent only on the $\alpha $-limit set of the trajectory (the set of limit points as $t \to -\infty $). Also, both $\sigma(p)$ and $\nu(p) $ are upper-semicontinuous in $p$ ($\limsup_{p \to p_0} \sigma(p) \leq \sigma(p_0)$).
\end{remark}
to discuss the computation of the Fenichel-type numbers. To this end, define two functions
\begin{align}
A_{t}(p) &= \left. DF^{-t}(p) \right|_{T_{p}M_0}:\ T_{p}M_0 \to T_{q}M_0;\ q = F^{-t}(p); \\
B_{t}(p) &= \left. \Pi_{p}DF^{t}(F^{-t}(p)) \right|_{N_{F^{-t}(p)}M_0}:\ N_{F^{-t}(p)}M_0 \to N_{p}M_0.
\end{align}
The reason for the $F^{-t}(p)$ being the inner argument for $B_{t}$ is that we need to step back in order to safely evaluate the linearized map in forward time. With these functions in hand we can calculate the Fenichel-type numbers equipped with the next theorem.
\begin{theorem}[Fenichel (1971)]
We have that the following holds
\begin{align}
\boxed{\nu(p) = \limsup_{t\to \infty }\| B_{t}(p)\|^{\frac{1}{t}}; }
\end{align}
and if $\nu(p)<1$, then
\begin{align}
\boxed{\sigma(p) = \limsup_{t\to \infty }\frac{\log\left( \| A_{t}(p) \| \right)}{-\log \left( \| B_{t}(p) \| \right)}.}
\end{align}
\end{theorem}
\begin{ex}[]
Consider the dynamical system
\begin{align}
\begin{dcases}
\dot{x} = -x(1-x)(1+x) \\
\dot{y} = -by
\end{dcases}
;\quad b>0.
\end{align}
Further, define $M_0 = \left\{ (x,y):\ x\in \left[ -\frac{3}{2}, \frac{3}{2}\right],\ y=0 \right\}$. Using the previous theorem, it is possible to show
\begin{align}
\nu (A_0) = \nu (C_0) = e^{-b}; \quad \sigma(A_0) = \sigma(C_0) = - \frac{2}{b}; \quad
\nu (B_0) = e^{-b}; \quad \sigma(B_0) = \frac{1}{b}.
\end{align}
The points $A_0$, $B_0$, and $C_0$ along with the manifold $M_0$ are illustrated in the phase space in Fig. \ref{fig:fenichel_ex1}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/14fenichel_ex1.pdf}
\caption{$A_0$, $B_0$, and $C_0$ along with the manifold $M_0$ are illustrated in the phase space.}
\label{fig:fenichel_ex1}
\end{figure}
\end{ex}
\begin{definition}
The manifold $M_0$ is an \emph{$r$-normally hyperbolic invariant manifold} (NHIM) if
\begin{enumerate}
\item $\nu (p)<1$ for all $p\in M_0$ ;
\item $\sigma(p) < \frac{1}{r}$ for all $p \in M_0$.
\end{enumerate}
\end{definition}
\begin{remark}[]
If there is no tangential compression, then $\sigma(p)<0$ and $(ii)$ holds automatically for all $r$.
\end{remark}
Building on the previous results, we have the next the next result.
\begin{theorem}[Fenichel (1971)]
Assume we have
\begin{align}
\dot{x}= f_{ \textrm{pert} }(x) = f_{0}(x) + \Delta f(x);\quad f_0, \Delta f \in \mathcal{C}^{r},\ r\geq 1,
\end{align}
for a compact, overflowing invariant (under $f_0(x)$) manifold $M_0$ which is $\mathcal{C}^{r}$ and $r$-normally hyperbolic. Then for $\|\Delta f \|_{\mathcal{C}^{1}}$ small enough, there exists an overflowing invariant manifold $\tilde{M}_0$ for $\dot{x}=f_{ \textrm{pert} }(x)$, such that
\begin{enumerate}
\item $\tilde{M}_{0}$ is $\mathcal{C}^{1}$-close to $M_0$ and $\mathcal{C}^{r}$-diffeomorphic to $M_0$ ;
\item All close enough trajectories converge to $\tilde{M}_{0}$ as $t \to \infty $, as long as they stay in a neighborhood of $\tilde{M}_{0}$.
\end{enumerate}
This result is depicted in Fig. \ref{fig:fenichel_thm2}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/15fenichel_thm2.pdf}
\caption{The manifolds $M_0$ and $\tilde{M}_{0}$ illustrated within the locally invariant manifold $W^{S}_{ \textrm{loc} }(\tilde{M}_{0})$ (green).}
\label{fig:fenichel_thm2}
\end{figure}
\end{theorem}
\begin{remark}[]
The following hold:
\begin{enumerate}
\item If $M_0$ is compact, normally hyperbolic invariant (without boundary), then it attracts \underline{all} nearby trajectories ($M_0$ is an attractor that smoothly persists);
\item The integer $r$ featured in the theorem is the minimum of the integers $r_i\in \mathbb{Z}^{+}$, where $f \in \mathcal{C}^{r_1}$, $M_0 \in \mathcal{C}^{r_2}$, and $\sigma(p) < \frac{1}{r_3}$;
\item Similar results hold for inflowing invariant manifolds that repel nearby initial conditions ($M_0$ and $\tilde{M}_{0}$ are persistent repellers);
\item The theory also extends to saddle-type invariant manifolds too, e.g. the unstable manifold of an overflowing invariant manifold. In this case assume that the tangent bundle $\left.T\mathbb{R}^{n}\right|_{M_0}$ has an invariant splitting, i.e. $T_{p}\mathbb{R}^{n} = T_pM_0 \oplus N_{p}^{U}M_0 \oplus N_{p}^{S}M_0$, then there exists an additional Fenichel-type number for $N^{U}M_0$ and $W^{U}_{ \textrm{loc} (M_0)}$ is robust. This is shown in Fig. \ref{fig:fenichel_thm_rmks}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/16fenichel_thm_rmks.pdf}
\caption{The effect of the tangent bundle having an invariant splitting with the addition of a Fenichel-type number for $N^{U}M_0$ and robust $W^{U}_{ \textrm{loc} }(M_0)$.}
\label{fig:fenichel_thm_rmks}
\end{figure}
\end{enumerate}
\end{remark}
For more see \cite{Wiggins1994}.
\section{Geometric singular perturbation theory}
Singular perturbation theory is the study of systems with two different time scales, i.e. of the form
\begin{align}
\begin{dcases}
\dot{x} &= f(x,y,\varepsilon) \\
\varepsilon \dot{y} &= g(x,y,\varepsilon)
\end{dcases}
;\quad 0 \leq \varepsilon \ll 1; \quad f,g \in \mathcal{C}^{1}. \label{eq9:spt_1}
\end{align}
In such systems $x \in \mathbb{R}^{n}$ is called the \emph{slow variable} and $y \in \mathbb{R}^{m}$ is the \emph{fast variable}.
\begin{ex}[One degree of freedom mechanical oscillator with a small mass]
An example of a system with two different time scales is a single degree of freedom mechanical oscillator with a small mass, the dynamical system is given by
\begin{align}
\varepsilon \ddot{x} + F(x, \dot{x}, \varepsilon) = 0 \implies
\begin{dcases}
\dot{x} &=y \\
\varepsilon \dot{y} &= - F(x,y, \varepsilon)
\end{dcases}
.
\end{align}
Note that $\dot{y} = \frac{1}{ \varepsilon}F(x,y,\varepsilon)$ implies that $y$ changes very quickly. The equations for $\dot{y}$ become singular as $\varepsilon \to 0$, hence we have singular perturbation (the smooth dependence of solutions on $\varepsilon$ does not apply).
\end{ex}
The classical approach to such systems is to set $\varepsilon =0 $ in \eqref{eq9:spt_1}, obtaining
\begin{align}
\begin{dcases}
\dot{x} = f(x,y, 0) \\
0 = g(x,y,0)
\end{dcases}
.
\end{align}
This is a mixed differential-algebraic system of equations. We solve $g (x,y,0)=0$ for $y=G_{0}(x)$, expand in $\varepsilon$, and plug this into $\dot{x}=f(x,y,\varepsilon)$. Sometimes this works, however this is not guaranteed. Instead we will follow \cite{Fenichel1979}.
First, turn this into a regular perturbation problem by introducing the fast time $t = \varepsilon \tau$, i.e $\tau = \frac{t}{\varepsilon}$ for $0 < \varepsilon \ll 1$. This change of coordinates induces via the chain rule the Jacobian
\begin{align}
\frac{d (\cdot) }{dt} = \frac{d( \cdot) }{d \tau }\frac{d \tau}{dt}.
\end{align}
The differential of a function $f$ with respect to $t$ will be denoted by $\dot{f}$, and is equal to $f' \frac{1}{\varepsilon}$, with $f'$ denoting the differential of $f$ with respect to $\tau$. Hence we obtain the rescaled system
\begin{align}
\begin{dcases}
x' = \varepsilon f(x,y, \varepsilon) \\
y' = g(x,y, \varepsilon)
\end{dcases}
. \label{eq9:spt_2}
\end{align}
Note that \eqref{eq9:spt_2} is a regular perturbation problem from a \underline{fictitious limit}. The systems \eqref{eq9:spt_1} and \eqref{eq9:spt_2} are not equivalent for $\varepsilon=0$, but are equivalent for any $\varepsilon >0$.
We analyze the $\varepsilon=0$ limit next, i.e.
\begin{align}
\begin{dcases}
x' = 0 \\
y' = g(x,y,0)
\end{dcases}
.\label{eq9:spt_3}
\end{align}
Assume that that there exists a pair $(x_0, y_0)$ such that $g(x_0, y_0,0)=0$, i.e. a fixed point of \eqref{eq9:spt_3}. Then we have $m$ equations for $m$ unknowns $y_0$, by the Implicit Function Theorem a unique nearby zero $y = \varphi_0(x)$ with $\varphi \in \mathcal{C}^{1}$ exists whenever we have that the following hold
\begin{enumerate}
\item The matrix $D_{y}g(x_0, y_0, 0)$ is nonsingular;
\item The derivative $D_{x}g(x_0, y_0, 0)$ exists near $(x_0, y_0)$.
\end{enumerate}
In which case we can define the $n$-dimensional invariant manifold filled with fixed points
\begin{align}
\boxed{
M_0 = \left\{ (x,y):\ y= \varphi_0(x),\ x\in U,\ U \textrm{ compact},\ \det\left[D_{y}g(x,y,0)\right]\neq 0 \right\} .
}
\end{align}
This manifold is called the \emph{critical manifold} and an example is shown in Fig. \ref{fig:critical_mfd_def}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.55\textwidth]{figures/ch9/17crit_mfd_def.pdf}
\caption{An example of the critical manifold $M_0$ (red) filled with fixed points, an $n$-dimensional invariant subspace (green line) passes through each fixed point.}
\label{fig:critical_mfd_def}
\end{figure}
Next, we linearize. Begin by defining $\eta = y - \varphi_0(x)$, then calculate the derivative of $\eta $ with respect to $\tau$
\begin{align}
\eta' = y' - \underbrace{\varphi_0' x'}_{=0} = g(x, \varphi_0(x) + \eta, 0) = \underbrace{g(x, \varphi_0(x), 0) }_{=0} + D_{y}g(x, \varphi_0(x), 0) \eta + \mathcal{O}(\eta^2).
\end{align}
Thus our linearization is $\eta' = D_{y} g(x, \varphi_0(x), 0 ) \eta$, due to the nonsingularity condition before we know that $\lambda_{i}(D_{y}g(x,y,0)) \neq 0$ for $i=1,\ldots, m$. If, in addition, we have that $ \textrm{Re}[\lambda_i(D_{y}g(x,y,0)]\neq 0 $ for $i = 1, \ldots, m$, then $M_0$ is normally hyperbolic.
The most important case is when $M_0$ is normally attracting, i.e. when \newline $ \textrm{Re} [\lambda_i(D_{y}g(x,y,0) ] < 0$ for each $i=1,\ldots, m$. In which case $M_0$ is $r$-normally hyperbolic, where if $\varphi_0(x)$ is $\mathcal{C}^{r}$ for any $r\in \mathbb{Z}^{+}$ then $M_0$ persists for $\varepsilon$ small enough.
The classical formal approach often fails when there exist eigenvalues with positive real parts, i.e. when $M_0$ is unstable.
For $\varepsilon>0$ and with eigenvalues of only strictly negative real parts (as before), we get the perturbation $M_\varepsilon$ of $M_0$. This perturbed manifold is the \emph{slow manifold}, motion on it is of $\mathcal{O}(\varepsilon)$ speed, and in this case it is attracting. We have that for the $\mathcal{C}^{1}$ function $\varphi_{\varepsilon}$ (also in $\varepsilon$ as long as $g(x,y,\varepsilon)$ is $\mathcal{C}^{1}$ in $\varepsilon$)
\begin{align}
y = \varphi_{\varepsilon}= \varphi_0(x) + \varepsilon \varphi_1(x) + \mathcal{O}(\varepsilon^{2}).
\end{align}
Thus $y$ is a smooth graph over the domain $U$. The perturbed manifold and the representation of $y$ as a smooth graph over $U$ is shown in Fig. \ref{fig:singular_perturbed_mfd}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/18singular_pert_mfd.pdf}
\caption{The perturbed manifold $M_{\varepsilon}$ near the critical manifold $M_0$ as well as the representation of $y$ as a smooth graph over the domain $U$.}
\label{fig:singular_perturbed_mfd}
\end{figure}
We can reduce to the slow manifold and find the reduced flow
\begin{align}
\left. x' \right|_{M_{\varepsilon}} &= \varepsilon\left. f(x,y, \varepsilon)\right|_{M_{\varepsilon }} = \varepsilon f(x, \varphi_\varepsilon(x), \varepsilon) \\
&= \varepsilon \left[ f(x, \varphi_0 (x) , 0) + \varepsilon\left( D_{\varepsilon} f(x, \varphi_0(x), 0) + D_{y}f(x, \varphi_0 (x), 0) \varphi_1(x) \right) \right] + \mathcal{O}(\varepsilon ^{3}).
\end{align}
In the original time $t$ we find the \emph{reduced flow}
\begin{align}
\boxed{
\dot{x} = f(x, \varphi_0(x), 0) + \varepsilon \left[ D_{\varepsilon}f(x, \varphi_0(x), 0) + D_{y} f(x, \varphi_0(x), 0) \varphi_1(x) \right] + \mathcal{O}(\varepsilon^{2}).
}
\end{align}
The leading order restricted flow on the attractor $M_{\varepsilon}$ is given by $\dot{x} = f(x, \varphi_0(x), 0)$. Any structurally stable feature of this leading-order reduced flow will persist on the attractor. For other features, we need higher-order terms. The dynamics near the slow manifold is attractive towards $M_{\varepsilon}$ if $ \textrm{Re} [\lambda_i ( D_{y}g(x,y,0)]<0$ for $i=1, \ldots, m$ for all $(x,y) \in M_0$, i.e. $W^{U}_{ \textrm{loc} }(M_{\varepsilon})$ is empty. Furthermore, we get the stable fibers $f_{\varepsilon}^{S}(p)$ which are $\mathcal{C}^{1}$-close to their respective $f_{0}^{S}(p)$, and are of the same dimension ($m$). These facts are illustrated in Fig. \ref{fig:perturbed_features}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/19perturbed_features.pdf}
\caption{The dynamics near the slow manifold and the stable fibers with their relationship to $M_0$ and the stable fibers of the linearization.}
\label{fig:perturbed_features}
\end{figure}
Define the $m+1$-dimensional \emph{strong stable manifold} of $\gamma_{\varepsilon}$ to be
\begin{align}
W_{ \textrm{loc} }^{SS}(\gamma_{\varepsilon}) = \bigcup_{p \in \gamma_{\varepsilon}}f_{\varepsilon}^{S}(p),
\end{align}
i.e. the collection of fastest-converging trajectories to $\gamma_\varepsilon$. By construction, the stable fibers form an invariant family along $\gamma_{\varepsilon}$, i.e. $F^{t}(f^{S}_{\varepsilon}(q)) \subset f^{S}_{\varepsilon}(p)$.
\begin{ex}[Clustering of inertial particles in fluids]
When finite-size inertial particles are suspended in fluids they tend to form clusters, even in incompressible fluids (as opposed to fluid particles). For a specific case, consider the steady flow in the wake of a bluff body \cite{Burns1999}. This can be seen in Fig. \ref{fig:vortex_street}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/20vortex_street.pdf}
\caption{The clustering of inertial particles observed experimentally, referred to as the \emph{von Kármán vortex street}.}
\label{fig:vortex_street}
\end{figure}
The notation here will be $x\in \mathcal{S}^{1}\times \mathbb{R}$ for the particle position in a moving frame and periodic in the first variable. The steady fluid velocity in the moving frame is given by $u(x) \in \mathbb{R}^{2}$, the nondimensionalized particle mass is given by $\varepsilon \ll 1$, and the velocity of the inertial particle at time $t$ given by $y=\dot{x}\in \mathbb{R}^{2}$. The equation of motion in its simplest form is given by \cite{Maxey1983}
\begin{align}
\begin{dcases}
\dot{x} &=y\\
\varepsilon \dot{y} & = u(x) - y
\end{dcases}
.
\end{align}
Thus we have the slow variable $x$ and the fast variable $y$, performing the time transformation as before ($t = \varepsilon \tau$) we obtain
\begin{align}
\begin{dcases}
x' = \varepsilon y \\
y' = u(x) - y
\end{dcases}
.
\end{align}
the $\varepsilon=0$ limit yields
\begin{align}
\begin{dcases}
x' = 0 \\
y' = u(x) - y = g(x,y,0)
\end{dcases}
.
\end{align}
Hence, we get the critical manifold
\begin{align}
M_0 = \left\{ (x,y)\in U \subset \mathcal{S}^{1}\times \mathbb{R}^{3}:\ y = u(x)\right\}.
\end{align}
To examine the stability of $M_0$ calculate $D_{y}g(x, u(x), 0) = - I_{2}$, hence $ \textrm{Re} [\lambda_i]= \lambda_i =-1<0$ for $i=1,2$. Hence, $M_0$ is normally hyperbolic and attracting, the unperturbed fibers $f_{0}^{S}(p)$ for $p\in M_0$ are 2-dimensional planes. The unperturbed geometry is depicted in Fig. \ref{fig:unperturbed_fluid_geometry}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/21unperturbed_fluid_geometry.pdf}
\caption{The unperturbed geometry of the dynamics given in the example of inertial particles suspended in the fluid.}
\label{fig:unperturbed_fluid_geometry}
\end{figure}
For $\varepsilon>0$ we get the perturbed manifold $M_{\varepsilon}$ which is $\mathcal{C}^{1}\ \mathcal{O}(\varepsilon)$-close to $M_0$. Trajectories in $W^{SS}(\gamma_{\varepsilon})$ quickly synchronize with $\gamma_{\varepsilon}$. The perturbed geometry is shown in Fig. \ref{fig:perturbed_fluid_geometry}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/22perturbed_fluid_geometry.pdf}
\caption{The perturbed geometry of the dynamics given in the example of inertial particles suspended in the fluid.}
\label{fig:perturbed_fluid_geometry}
\end{figure}
To study the dynamics on the slow manifold, write the perturbed manifold $M_{\varepsilon}$ as the graph of the function $\varphi_{\varepsilon}$
\begin{align}
M_{\varepsilon} = \left\{ (x,y):\ y=\varphi_{\varepsilon}(x)=\underbrace{\varphi_0(x)}_{u(x)} + \varepsilon h_{1}(x) + \mathcal{O}(\varepsilon^{2}) \right\}.
\end{align}
By the invariance of $M_{\varepsilon}$ the formula $y=\varphi_{\varepsilon}(x)$ holds along full trajectories. Plugging this in and differentiating with respect to $\tau$ we find
\begin{align}
y' = (Du)x' + \varepsilon (Dh_{1})x' + \ldots = (Du) \varepsilon u(x) + \mathcal{O}(\varepsilon^{2}).
\end{align}
In the second equation the fact $x'=\varepsilon \varphi_{\varepsilon}(x)$ was used. Also from the equation of motion we find
\begin{align}
\left. y'\right|_{M_{\varepsilon}} = \left. \left(u(x) - y\right) \right|_{M_{\varepsilon}} = u(x) - \left(u(x) + \varepsilon h_{1}(x) + \ldots\right) = - \varepsilon h_{1}(x) + \mathcal{O}(\varepsilon^{2}).
\end{align}
By comparing coefficients we then find
\begin{align}
h_{1} = - (Du)u.
\end{align}
Hence, the reduced flow on the slow manifold is
\begin{align}
x' = \varepsilon \varphi_{\varepsilon}(x) = \varepsilon \left( u(x) - \varepsilon (Du(x)) u(x) \right) + \mathcal{O}(\varepsilon^{2}).
\end{align}
Transforming this back into the original time we find
\begin{align}
\dot{x} = u(x) - \varepsilon (Du(x))u(x) + \mathcal{O}(\varepsilon^{2}).
\end{align}
The $\mathcal{O}(1)$ term, $u(x)$, denotes the incompressible terms, meanwhile the $\mathcal{O}(\varepsilon)$ term is the dissipative terms (i.e. has nonzero divergence). This nonzero divergence can be calculated
\begin{align}
\nabla \cdot \left[ (Du)u) \right] = \textrm{Tr} \left[ Du Du\right] = - 2Q;\quad Q = \frac{1}{2}\left| \|\Omega\|^{2} - \| S\|^{2} \right|,
\end{align}
where $\| \cdot \|$ denotes the Euclidean matrix norm. The unperturbed system and $Q>0$ case are depicted in Fig. \ref{fig:clustering_Qpos}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/23Qpos_clustering.pdf}
% \includegraphics[width=0.45\textwidth]{figures/ch9/23a_Qpos_clustering.png}
% \includegraphics[width=0.45\textwidth]{figures/ch9/23b_Qpos_clustering.png}
\caption{Left: The unperturbed phase space. Right: The perturbed phase space for $Q>0$, the green arrows denotes unperturbed stable fibers, and the red line designates the limit cycle. By identifying the left and right sides, we get a periodic variable.}
\label{fig:clustering_Qpos}
\end{figure}
A more general approach to particle motion is given by \cite{Sapsis2008} using the Maxey-Riley equations. For neutrally buoyant particles (ones which are suspended in the fluid) we have
\begin{align}
\varepsilon \dot{v} - \varepsilon \frac{Du}{Dt} = -(v-y);\quad \varepsilon = \frac{3St}{2}\ll 1, \label{eq9:maxeyriley}
\end{align}
where $S$ denotes the Strouhal number. Formulating this in terms of geometric singular perturbation theory, with $x \in \mathbb{R}^{d}$ ($d=2,3$) we get
\begin{align}
\begin{dcases}
\dot{x} = y\\
\varepsilon \dot{y} = u(x,t) - y + \varepsilon \frac{Du(x,t)}{Dt}
\end{dcases}
\implies
\begin{dcases}
t' = \varepsilon \\
x' = \varepsilon y \\
y' = u(x,t) - y + \varepsilon \frac{Du(x,t)}{Dt}
\end{dcases}
.
\end{align}
The time transformation used was $t = t_0 + \varepsilon \tau$. From here we have the slow variables $x$ and $t$, and the fast variable $y$. There then exists a $(d+1)$-dimensional slow manifold $M_\varepsilon$ where we have $y = u(x,t) + \varepsilon u_1(x,t) + \mathcal{O}(\varepsilon)$. The reduced particle dynamics here is given by
\begin{align}
y' &= \nabla u x' + u_t \varepsilon + \varepsilon \nabla u_1 x' + u_{1t}\varepsilon^{2} + \mathcal{O}(\varepsilon^{2})
= \varepsilon(\nabla uy + u_{t}) + \mathcal{O}(\varepsilon^{2}) \\
&= \varepsilon (\nabla u u + u_{t}) + \mathcal{O}(\varepsilon^{2})
= \varepsilon \frac{Du}{Dt} + \mathcal{O}(\varepsilon^{2}).
\end{align}
Also, we have
\begin{align}
y' &= u - \left( u + \varepsilon u_{1} + \mathcal{O}(\varepsilon^{2}) \right) + \varepsilon \left( u_{t} + u_{x}u \right) \\
&=-u_{1} + \varepsilon \frac{Du}{Dt} + \mathcal{O}(\varepsilon^{2}).
\end{align}
By comparing terms we see that $u_{1} =0$, in fact this holds up to any order.
The reduced dynamics on the slow manifold follow $\dot{x}=v=u(x,t)$ up to \underline{any} order independent of $\varepsilon$. This suggests a fast synchronization with the fluid, yet scattering of the particles is still observed along fluid motions. The reason for this can be seen by rewriting \eqref{eq9:maxeyriley}
\begin{align}
\dot{v} - u_{t} - \nabla u u = \mu (u-v);\quad \dot{v} - u_{t} - \nabla u v = \mu (u-v) + \nabla u(u-v).
\end{align}
This implies that
\begin{align}
\begin{dcases}
\frac{d}{dt}\left(v - u(x,t)\right) = - \left( \nabla u + \mu I \right) \left( v - u \right) \\
\frac{d}{dt} x = v
\end{dcases}
.
\end{align}
These in turn imply that $v=u(x,y)$ is an invariant manifold for any $\varepsilon = \frac{1}{\mu }$, but we only know its stability for $\varepsilon \ll 1$.
This means that different parts of the manifold may have different stability types.
To analyze the stability in more detail set $z= v- u(x,y)$, i.e. the distance from $ M_{\varepsilon} $ in the $y$-direction. The dynamics with this variable now is
\begin{align}
\begin{dcases}
\dot{z} = - \left[ \nabla u(x,t) + \mu I \right] z \\
\dot{x} = z + u(x,t)
\end{dcases}
\implies \frac{1}{2}\frac{d}{dt}\|z\|^{2} = - \langle z, (\nabla u + \mu I) z \rangle = - \langle z, (S + \mu I) z \rangle,
\end{align}
Where $S = \frac{1}{2} \left( \nabla u + \nabla u^{T} \right) = S^{T}$ is the rate of strain tensor.
We can derive conditions now for guaranteed attraction or repulsion:
\begin{enumerate}
\item \textbf{Exponential attraction} is guaranteed when we have
\begin{align}
\frac{1}{2} \frac{d}{dt}\| z\| ^{2} \leq \lambda_{ \textrm{max} } \left[ -( S + \mu I) \right] \|z \|^{2}.
\end{align}
By the Gronwall-inequality, this implies
\begin{align}
\| z(t) \| \leq \| z(t_0)\| \exp\left( \int_{t_0}^{t} \lambda_{ \textrm{max} }[-(S + \mu I) ]ds \right).
\end{align}
Thus we have that $\|z(t)\|$ decays as long as we have
\begin{align}
\lambda_{ \textrm{max} }\left[ - S(x(t), y(t), t) - \mu I \right] < 0
\Leftrightarrow
\lambda _{ \textrm{min } } \left[ S(x,t) + \mu I \right] >0
\Leftrightarrow
\mu > \sqrt{|\det(S)|}.
\end{align}
\item \textbf{Exponential repulsion} is guaranteed when we have
\begin{align}
\frac{1}{2} \frac{d}{dt}\| z\| ^{2} \geq \lambda_{ \textrm{min} } \left[ - (S + \mu I) \right] \|z \|^{2}.
\end{align}
Thus we have that $\|z(t)\|$ grows instantaneously when
\begin{align}
\lambda_{ \textrm{max} }\left[ -(S + \mu I) \right] > 0 \implies \lambda _{ \textrm{max} } \left[S + \mu I \right] < 0.
\end{align}
\end{enumerate}
More generally, an attracting/repelling invariant manifold may have localized repulsion/attraction along it, even if all trajectories approach it asymptotically \cite{Sapsis2010}.
\end{ex}
To study the local repulsion/attraction, consider the following dynamical system
\begin{align}
\dot{x}= f(x,t);\quad x \in \mathbb{R}^{n},
\end{align}
with the flow map $F_{t_0}^{t}: x_0 \mapsto x(t;t_0, x_0)$ and a locally invariant $k$-dimensional manifold $\mathcal{M}(t) \subset \mathbb{R}^{n}$, i.e. $F_{t_0}^{t}(\mathcal{M}(t_0)) \subset \mathcal{M}(t)$. Now define the \emph{normal infinitesimal Lyapunov exponent} $\sigma(p,t)$ (abbreviated NILE) by taking the $t\to t_0$ limit and looking at the largest growth for a tangent vector $w_0$, i.e.
\begin{align}
\boxed{
\sigma(p,t) = \lim_{s\to 0} \frac{1}{s} \log \left\| \left.\Pi_{F_{t}^{t+s}(p)}^{t+s}DF_{t}^{t+s}(p) \right|_{N_{p}\mathcal{M}(t)} \right\|.
} \label{eq9:NILE_def}
\end{align}
The graphical depiction of the terms used for the calculation of the normal infinitesimal Lyapunov exponent are depicted in Fig. \ref{fig:NILE_def}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/24NILE_def.pdf}
\caption{The geometry of tangent vectors along the invariant manifold M. The quantities used to define the NILE \eqref{eq9:NILE_def} are indicated in the figure.}
\label{fig:NILE_def}
\end{figure}
To compute the NILE we can use the following formula
\begin{align}
\boxed{\sigma(p,t) = \max_{n\in N_{p}\mathcal{M}(t),\ |n|=1} \langle n, S(p,t)n\rangle;\quad S = \frac{1}{2}\left( Df + Df^{T}\right). }
\end{align}
Let us express the invariant manifold as a graph over $k$ variables, i.e. write $x$ as $x = (a,b)$, where $a \in \mathbb{R}^k$ and $b\in \mathbb{R}^{k-n}$, $f = (A, B)$ and on the invariant manifold $M$ we have $b = h(a)$. We can then write
\begin{align}
\sigma(a,t) = \frac{1}{2}\lambda _{ \textrm{max} }\left[ \Gamma(a,t) + \Gamma(a,t)^{T} \right];
\end{align}
where we have defined the tensors
\begin{align}
\Gamma(a,t)= B_{b} (a, h(a),t) - Dh(a,t) A_{b}(a, h(a),t).
\end{align}
\begin{ex}[Neutrally buoyant particles]
Consider the dynamical system with $x,z\in \mathbb{R}^{2}$
\begin{align}
\begin{dcases}
\dot{x} = z + u(x,t) \\
\dot{z} = - \left( \nabla u(x,t) + \mu I \right) z
\end{dcases}
; \implies \mathcal{M}_{0}(t) \left\{ (x,z) \in \mathbb{R}^{2}\times \mathbb{R}^{2}:\ z =0\right\}.
\end{align}
Therefore we have
\begin{align}
\Gamma(a,t) = B_{b}(x,0,t) = - \left(\nabla u(x,t) + \mu I \right).
\end{align}
With this we can calculate the NILE
\begin{align}
\sigma(p,t) = \lambda _{ \textrm{max} } \left[ - (S(x,t) + \mu I ) \right]; \quad S = \frac{\nabla u + \nabla u^{t}}{2}.
\end{align}
As concluded before, where $\sigma(p,t)>0$ we have a region of \underline{local} repulsion, analogously where $\sigma(p,t) <0$ we have a region of \underline{local} attraction.
\end{ex}
\section{Existence of invariant manifolds}
We now turn to the various methods to prove the existence of an invariant manifold:
\begin{enumerate}
\item \textbf{Lyapunov-Perron Method} The manifold is the solution of a global integral equation, this approach requires global coordinates;
\item \textbf{Hadamard's Method} The manifold is sought as an invariant graph, this was the approach Fenichel used and local coordinates are sufficient for this approach;
\item \textbf{Topological Methods} There are multiple topological approaches, for instance the Wasewsky principle.
\end{enumerate}
Next, the Lyapunov-Perron method will be sketched for stable manifolds on the plane. Consider the dynamical system
\begin{align}
\dot{x} = f(x);\quad x \in \mathbb{R}^{2};\quad f(0)=0;\quad \textrm{spect} [Df(0)] = \{ - \lambda _{S}, \lambda _{U}\};\quad \lambda _S, \lambda_U > 0. \label{eq9:LP_method1}
\end{align}
The objective is to construct a stable manifold tangent to $E_{S}$. This will be achieved in multiple steps.
\begin{enumerate}
\item First, choose a good basis
\begin{align}
x = Ty;\quad T =
\begin{pmatrix}
e_{S} & e_{U}
\end{pmatrix}
;\quad y =
\begin{pmatrix}
y_S \\
y_U
\end{pmatrix}
.
\end{align}
And implement this transformation
\begin{align}
\dot{x} = Df(0)x + \mathcal{O}(\|x\|^{2}) \implies T\dot{y} = Df(0)Ty + \mathcal{O}(\| y\|^{2}).
\end{align}
By multiplying from the left by $T^{-1}$ we find
\begin{align}
\dot{y} = \underbrace{T^{-1}DF(0)T}_{ \textrm{diag} [-\lambda_S, \lambda_U ]}y + \mathcal{O}(\|y\|^{2});\quad \lim_{y \to 0} \frac{\|g(y)\|}{\|y\|^{2}}< \infty .
\end{align}
And now we find
\begin{align}
\begin{dcases}
\dot{y}_{S} = - \lambda _{S}y_{S} + g_{S}(y) \\
\dot{y}_{U} = \lambda _{U}y_{U} + g_{U}(y)
\end{dcases}
.
\end{align}
\item Second, define the local stable manifold. The classic definition of $W^{S}(0)$ is that it is the collection of initial coordinates $y_0$ which under the limit of the flow map have $\lim_{t \to \infty }F_{t}(y_0)=0$. This requires detailed knowledge of asymptotics, and thus is hard to work with. For linear systems an alternative definition is, that $W^S(0)$ is the collection of forward-bounded trajectories, but this is generally nothing special after the addition of nonlinear terms. However, we may change the nonlinear system away from the origin to ensure that boundedness remains a distinguishing property.
To go about this we separate the phase space into the rectangular area (of half-width $\delta$) around the origin and the rectangular annulus of outer half-width $2\delta$. In the inner rectangle, the original nonlinear dynamics hold, outside of the annulus the dynamics are 0 (i.e. $f(x)=0$). Interpolating in between these regimes takes place on the annulus using a so-called \emph{bump function} $\Psi_{\delta}$, a smooth function which is equal to 1 on the interval $[-\delta, \delta]$ and equal to 0 on the intervals $(-\infty, -2\delta)$ and $(2\delta, \infty )$, in between these regions is the interpolation. The bump function and the interpolated new dynamical system are depicted in Fig. \ref{fig:interpolated_DS}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.99\textwidth]{figures/ch9/24_5interpolated_DS.pdf}
\caption{The interpolated dynamical system, within the green area the original nonlinear dynamics hold, on the yellow area the smoothly deformed (interpolated) system holds, and outside of these two regions, the null dynamics hold. The bump function is also depicted.}
\label{fig:interpolated_DS}
\end{figure}
Thus we have the modified system
\begin{align}
\begin{dcases}
\dot{y}_{S} = - \lambda_{S}y_{S} + G_{S}(y) \\
\dot{y}_{U} = \lambda _{U} y_U + G_{U}(y)
\end{dcases}
.
\end{align}
Furthermore, we can bound this system
\begin{subequations}
\begin{align}
|G'_{S,U}(y) | &= \Psi'_{\delta}g_{S,U} + \Psi_{\delta} g'_{S,U} \leq |\Psi_{\delta}| | g_{S,U}| + |\Psi_{\delta}| |g'_{S,U}|\\
&\leq \frac{K}{\delta} C \delta^2 + 1\cdot2\delta \leq C_0 \delta.
\end{align}
\end{subequations}
Then our goal becomes to find globally bounded solutions in the modified system, i.e.
\begin{align}
W^{S}_{ \textrm{loc} }(0) = \left\{ y_0 \in B_{\delta}:\ \sup_{t \geq 0}\left|\mathcal{F}^{t}(y_0) \right| < \infty \right\}.
\end{align}
\item Now pretend that $y(t)$ is known to find the \emph{equivalent integral equations}. The variation of constants formula yields
\begin{subequations}
\begin{align}
y_{S}(t) &= y_{S}(t_S) e^{- \lambda _{S}(t - t_S)} + \int_{t_S}^{t} e^{-\lambda _{S}(t-s)} G_{S}(y(s)) ds \\
y_{U}(t) &= y_{U}(t_U) e^{ \lambda _{U}(t - t_U)} + \int_{t_U}^{t} e^{\lambda _{U}(t-s)} G_{U}(y(s)) ds.
\end{align}
\end{subequations}
By taking $t_{U}\to \infty $ and $t_{S}=0$ we restrict to $W^{S}_{ \textrm{loc} }(0)$, thus we find the integral equations for $W^{S}_{ \textrm{loc} }(0)$
\begin{align}
\begin{dcases}
y_{S}(t) = e^{- \lambda _{s}t}y_{S}(0) + \int_{0}^{t} e^{-\lambda _{S}(t-s)}G_{S}(y(s))ds \\
y_{U}(t) = \int_{\infty }^{t} e^{\lambda_{U}(t-s)}G_{U}(y(s))ds
\end{dcases}
.\label{eq9:LP_method5}
\end{align}
\item Finally we have a fixed point problem, the equation \eqref{eq9:LP_method5} is fulfilled when $y(t) = \mathcal{F}(y(t);y_S)$, thus we have a fixed point problem with the initial condition as a parameter. There exists a unique solution if $\mathcal{F}$ is a contraction mapping from a complete metric space into itself, i.e. when we can apply the Banach fixed point theorem. For $\mathcal{F}$ to be contracting, we require
\begin{align}
d(\mathcal{F}(x), \mathcal{F}(y)) \leq q d(x,y);\quad 0 < q < 1,
\end{align}
for the metric $d$ defined over the underlying metric space.
Define the set
\begin{align}
\mathcal{B}_{\delta} = \left\{ y(t): [0,\infty ) \to \mathbb{R}^{2}:\ y_{S}(0) = \delta,\ \|y\| \leq K,\ y\in \mathcal{C}^{0}[0, \infty ) \right\},
\end{align}
where the norm is $\|y\| = \sup_{t\geq 0}\|y(t)\|$. The space can be equipped with the metric
\begin{align}
d(x,y) = \sup_{t\geq 0} \| x(t) - y(t) \| = \| y - x\|,
\end{align}
and is complete with respect to this metric by the uniform convergence of Cauchy sequences of $\mathcal{C}^{0}$ functions to $\mathcal{C}^{0}$ functions, with limits obeying the same bound. We also have to show that $\mathcal{F}$ maps into itself, i.e. that $ \|\mathcal{F}(y) \| \leq K$ when $\|y\| \leq K$. To this end, calculate
\begin{subequations}
\begin{align}
\|y(t)\| &\leq | y_{S}(t)| + |y_{U}(t) | \\
&\leq e^{-\lambda _{S}(t)}| y_{S}(0)| + \int_{0}^{t} e^{-\lambda _{S}(t-s)}{| G_{S}(y(s))|} ds + \int_{t}^{\infty } e^{\lambda _{U}(t-s)}{|G_{U}(y(s))|}ds \\
&\leq \delta + e^{-\lambda _{S}t}\int_{0}^{t} e^{\lambda _{S}s}\underbrace{| G_{S}(y(s))|}_{\leq C\delta^{2}} ds + e^{\lambda _{U}t}\int_{t}^{\infty } e^{-\lambda _{U}s}\underbrace{|G_{U}(y(s))|}_{\leq C\delta ^{2}}ds \\
&\leq \delta + C\delta^{2} \frac{1}{\lambda_{S}} \left[ e^{-\lambda _{S}(t-s)}\right]_{0}^{t} - \frac{C \delta^2}{\lambda _{U}} \left[ e^{\lambda _{U}(t-s)}\right]_{t}^{\infty } \\
&= \delta + C \delta^{2} \left( \frac{1}{\lambda_{S}}\left(1 - e^{-\lambda _{S}t}\right) + \frac{1}{\lambda _{U}}\left(1-0\right) \right) \\
&\leq \delta + C \delta^{2} \left( \frac{1}{\lambda _S} + \frac{1}{\lambda _U}\right) \leq K.
\end{align}
\end{subequations}
This shows that $y(t) \in \mathcal{B}_{\delta}$ for $\delta$ small enough. Furthermore, we have that $\mathcal{F}$ is a contraction mapping for $\delta$ small enough.
\begin{align}
\|\mathcal{F}(y) - \mathcal{F}(x)\| &\leq \int_{0}^{t} e^{-\lambda_{S}(t-s)}| G_{S}(x(s)) - G_{S}(y(s))| ds \\
&\quad + \int_{t}^{\infty } e^{\lambda _{U}(t-s)} | G_{U}(x(s)) - G_{U}(y(s)) | ds \\
&\leq \int_{0}^{t} e^{-\lambda _{S}(t-s)}C_0 \delta \| x(s) - y(s)\| ds \\
&\quad + \int_{t}^{\infty } e^{\lambda _{U}(t-s)}C_0 \delta \|x(s) - y(s)\| ds \label{eq9:MVT}\\
&\leq C_0 \delta \left(\frac{1}{\lambda _{S}} + \frac{1}{\lambda _{U}} \right) \| x - y\|,
\end{align}
where in \eqref{eq9:MVT} the mean value theorem was used. This inequality implies that for $\delta$ small enough,
\begin{align}
\|\mathcal{F}(y) - \mathcal{F}(x) \| \leq \underbrace{C_0 \delta \left( \frac{1}{\lambda_S} + \frac{1}{\lambda _{U}}\right) }_{\leq q < 1} \| x - y\|.
\end{align}
\end{enumerate}
For the general, mulit-dimensional case see \cite{Chicone}. A similar argument also work for the strong stable manifold.
\section{Spectral submanifolds and model reduction}
For reference, see \cite{Ponsioen2016}. A typical model reduction involves a projection onto subspaces, even for nonlinear systems.
\begin{ex}[]
consider the dynamical system
\begin{align}
\begin{dcases}
\dot{x} = x y + x^{3} \\
\dot{y} = -y - 2x^{2}
\end{dcases}
.\label{eq9:reduction1}
\end{align}
Next, linearize at $x=y=0$ to find a stable and center manifold as shown in Fig. \ref{fig:reduction_linearization1}.
\begin{figure}[h!]
\centering
\includegraphics[width=0.6\textwidth]{figures/ch9/25reduction_linearization1.pdf}
\caption{Linearization of the dynamical system \eqref{eq9:reduction1}}
\label{fig:reduction_linearization1}
\end{figure}
The usual argument is that fast-decaying modes die out. Thus we project the system onto the center subspace $E^{C}$, which is equivalent to setting $y=0$ in \eqref{eq9:reduction1} to find
\begin{align}
\dot{x} = x^3.
\end{align}
This is the \emph{reduced-order model from projection}. Here the origin is unstable, and all non-equilibrium orbits are unbounded.
The dynamical systems approach is an exact model reduction. We known that a center manifold $W^{C}(0)$ tangent to the center subspace at $0 $ exists and is $\mathcal{C}^{r} $ for any $r\geq 0 $, but is not unique in general. The best possible reduced-order model examines the dynamics on $W^{C}(0) $. Write
\begin{align}
W^{C}(0) = \{(x,y):\ y = h(x) = ax^2 + bx^3 + cx^4 + \mathcal{O}(x^5) \}.
\end{align}
By invariance we know that
\begin{align}
\dot{y} = h' \dot{x} = \left[ 2 a x + \mathcal{O}(x^{2}) \right] \left( xy + x^{3}\right) = 2a(a+1)x^{4} + \mathcal{O}(x^{5}).
\end{align}
By restricting to $W^{C}(0)$ we also have that
\begin{align}
\left.\dot{y} \right|_{W^{C}(0)} = \left.-y\right|_{W^{C}(0)} - 2x^2 = -(a+2)x^{2} - bx^3 - cx^4 + \mathcal{O}(x^{5}).
\end{align}
Comparing coefficients allows us to obtain $a=-2$, $b=0$, and $c=-2a(a+1)=-4$. Therefore we find the reduced dynamics on $W^{C}(0)$
\begin{align}
\dot{x} = \left.(xy+x^3)\right|_{W^{C}(0)} = x(-2x^2 + \mathcal{O}(x^4) ) + x^3 = -x^3 + \mathcal{O}(x^5).
\end{align}
This is the exact reduced-order model and we find that $x$ is asymptotically stable. The reduced-order model captures the correct local dynamics. Next, we discuss if this discrepancy is the result of a vanishing eigenvalue, i.e. a degenerate linear part.
\end{ex}
\begin{ex}[]
A more realistic case is when all modes decay under linearization, i.e. $W^{C}(0) = W^{U}(0) = \emptyset$. Consider the dynamical system
\begin{align}
\begin{dcases}
\dot{x} = -\frac{1}{4}x + xy + x^{3} \\
\dot{y} = -y - 2x^{2}
\end{dcases}
.
\end{align}