-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathperception.py
133 lines (109 loc) · 5.29 KB
/
perception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import math
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
from torch.nn import Parameter
from torch.autograd import Variable
class NoisyLinear(nn.Linear):
def __init__(self, in_features, out_features, sigma_init=0.017, bias=True):
super(NoisyLinear, self).__init__(in_features, out_features, bias=True)
self.sigma_init = sigma_init
self.sigma_weight = Parameter(torch.Tensor(out_features, in_features))
self.sigma_bias = Parameter(torch.Tensor(out_features))
self.register_buffer('epsilon_weight', torch.zeros(out_features, in_features))
self.register_buffer('epsilon_bias', torch.zeros(out_features))
self.reset_parameters()
def reset_parameters(self):
if hasattr(self, 'sigma_weight'):
init.uniform(self.weight, -math.sqrt(3 / self.in_features), math.sqrt(3 / self.in_features))
init.uniform(self.bias, -math.sqrt(3 / self.in_features), math.sqrt(3 / self.in_features))
init.constant(self.sigma_weight, self.sigma_init)
init.constant(self.sigma_bias, self.sigma_init)
def forward(self, input):
return F.linear(input, self.weight + self.sigma_weight * Variable(self.epsilon_weight),
self.bias + self.sigma_bias * Variable(self.epsilon_bias))
def sample_noise(self):
self.epsilon_weight = torch.randn(self.out_features, self.in_features)
self.epsilon_bias = torch.randn(self.out_features)
def remove_noise(self):
self.epsilon_weight = torch.zeros(self.out_features, self.in_features)
self.epsilon_bias = torch.zeros(self.out_features)
class BiRNN(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, device, head_name):
super(BiRNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
if 'lstm' in head_name:
self.lstm = True
else:
self.lstm = False
if self.lstm:
self.rnn = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True).to(device)
else:
self.rnn = nn.GRU(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True).to(device)
self.feature_dim = hidden_size * 2
self.device = device
def forward(self, x, state=None):
# Set initial states
h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(self.device) # 2 for bidirection
c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(self.device)
# Forward propagate LSTM
if self.lstm:
out, (_, hn) = self.rnn(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size*2)
else:
out, hn = self.rnn(x, h0) # out: tensor of shape (batch_size, seq_length, hidden_size*2)
return out, hn
class RNN(torch.nn.Module):
def __init__(self, input_size, hidden_size, num_layers, device, head_name):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
if 'lstm' in head_name:
self.lstm = True
else:
self.lstm = False
if self.lstm:
self.rnn = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True).to(device)
else:
self.rnn = nn.GRU(input_size, hidden_size, num_layers, batch_first=True).to(device)
self.feature_dim = hidden_size
# add layer normalization to stable training
self.LayerNorm = nn.LayerNorm([hidden_size])
self.device = device
def forward(self, x, h0, c0=None, state=None):
# x: [batch_size, seq_length, input_size] h:[num_layers, batch_size, hidden_size]
# Forward propagate LSTM
h0 = self.LayerNorm(h0)
if self.lstm:
out, (_, hn) = self.rnn(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size*2)
else:
out, hn = self.rnn(x, h0) # out: tensor of shape (batch_size, seq_length, hidden_size*2)
hn = self.LayerNorm(hn)
return out, hn
def xavier_init(layer):
torch.nn.init.xavier_uniform_(layer.weight)
torch.nn.init.constant_(layer.bias, 0)
return layer
class AttentionLayer(torch.nn.Module):
def __init__(self, feature_dim, weight_dim, device=torch.device('cpu')):
super(AttentionLayer, self).__init__()
self.in_dim = feature_dim
self.device = device
self.Q = xavier_init(nn.Linear(self.in_dim, weight_dim))
self.K = xavier_init(nn.Linear(self.in_dim, weight_dim))
self.V = xavier_init(nn.Linear(self.in_dim, weight_dim))
self.feature_dim = weight_dim
def forward(self, x):
'''
inference
:param x: [num_agent, num_target, feature_dim]
:return z: [num_agent, num_target, weight_dim]
'''
# z = softmax(Q,K)*V
q = torch.tanh(self.Q(x)) # [batch_size, sequence_len, weight_dim]
k = torch.tanh(self.K(x)) # [batch_size, sequence_len, weight_dim]
v = torch.tanh(self.V(x)) # [batch_size, sequence_len, weight_dim]
z = torch.bmm(F.softmax(torch.bmm(q, k.permute(0, 2, 1)), dim=2), v) # [batch_size, sequence_len, weight_dim]
global_feature = z.sum(dim=1)
return z, global_feature