-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathplayer_util.py
222 lines (188 loc) · 9.22 KB
/
player_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
from __future__ import division
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.autograd import Variable
import json
from utils import ensure_shared_grads
class Agent(object):
def __init__(self, model, env, args, state, device):
self.model = model
self.env = env
self.num_agents = env.n
self.num_targets = env.num_target
self.state_dim = env.observation_space.shape[2]
self.model_name = args.model
self.prior = torch.FloatTensor(np.array([0.7, 0.3])) # communication edge prior
self.model_name = args.model
self.eps_len = 0
self.eps_num = 0
self.args = args
self.values = []
self.log_probs = []
self.rewards = []
self.entropies = []
self.rewards_eps = []
self.done = True
self.info = None
self.reward = 0
self.device = device
self.lstm_out = args.lstm_out
self.reward_mean = None
self.reward_std = 1
self.num_steps = 0
self.env_step = 0
self.vk = 0
self.state = state
self.rank = 0
# evaluation for ToM & Comm
self.comm_ToM_loss = torch.zeros(1)
self.no_comm_ToM_loss = torch.zeros(1)
self.ToM_loss = torch.zeros(1)
self.hself = torch.zeros(self.num_agents, self.lstm_out).to(device)
self.hToM = torch.zeros(self.num_agents, self.num_agents, self.lstm_out).to(device)
self.poses = None # cam_dim=3 ndarray
self.ToM_history = []
self.Policy_history = []
def get_other_poses(self):
# ToM2C requires the poses of each agent, so you need to declare how to get the poses for each env
if "MSMTC" in self.args.env:
cam_states = self.env.get_cam_states()
cam_states = torch.from_numpy(np.array(cam_states)).float().to(self.device)
# compute relative camera poses in self coordinate
cam_dim = cam_states.size()[-1] # cam_dim=3
cam_states_duplicate = cam_states.unsqueeze(0).expand(self.num_agents, self.num_agents, cam_dim)
cam_states_relative = cam_states_duplicate - cam_states.unsqueeze(1).expand(self.num_agents, self.num_agents, cam_dim)
cam_state_theta = ((cam_states_relative[:,:,-1]/180) * np.pi).reshape(self.num_agents, self.num_agents, 1)
poses = torch.cat((cam_states_relative[:,:,:2], torch.cos(cam_state_theta), torch.sin(cam_state_theta)),-1)
return poses
elif "CN" in self.args.env:
return torch.zeros(self.num_agents, self.num_agents, 1)
def get_mask(self):
if not self.args.mask:
return torch.ones(self.num_agents, self.num_agents, 1)
# ToM2C provides the option to mask the ToM inference and communication to agents out of ranges(include self)
if "MSMTC" in self.args.env:
mask = self.env.get_mask()
mask = torch.from_numpy(mask).unsqueeze(-1).bool()
mask = mask.to(self.device)
return mask
else:
return torch.ones(self.num_agents, self.num_agents, 1)
def get_available_actions(self):
available_actions = self.env.get_available_actions()
available_actions = torch.from_numpy(available_actions).to(self.device)
return available_actions
def action_train(self):
if self.args.mask_actions:
available_actions = self.get_available_actions()
available_actions_data = available_actions.cpu().numpy()
else:
available_actions = None
available_actions_data = 0
self.poses = self.get_other_poses()
self.mask = self.get_mask()
value_multi, actions, entropy, log_prob, hn_self, hn_ToM, ToM_goals, edge_logits, comm_edges, probs, real_cover, ToM_target_cover =\
self.model(self.state, self.hself, self.hToM, self.poses, self.mask, available_actions = available_actions)
actions_env = actions.cpu().numpy() # only ndarrays can be processed by the environment
state_multi, reward, self.done, self.info = self.env.step(actions_env)#,obstacle=True)
reward_multi = reward.repeat(self.num_agents) # all agents share the same reward
self.reward_org = reward_multi.copy()
if self.args.norm_reward:
reward_multi = self.reward_normalizer(reward_multi)
# save state for training
Policy_data = {"state":self.state.detach().cpu().numpy(), "poses": self.poses.detach().cpu().numpy(),"actions": actions_env, "reward": reward_multi,\
"mask":self.mask.detach().cpu().numpy(),"available_actions": available_actions_data}
real_goals = torch.cat((1-actions,actions),-1)
ToM_data = {"state":self.state.detach().cpu().numpy(), "poses":self.poses.detach().cpu().numpy(), "mask":self.mask.detach().cpu().numpy(),\
"real":real_goals.detach().cpu().numpy(), "available_actions": available_actions_data}
self.Policy_history.append(Policy_data)
self.ToM_history.append(ToM_data)
if isinstance(self.done, list): self.done = np.sum(self.done)
self.state = torch.from_numpy(np.array(state_multi)).float().to(self.device)
self.reward = torch.tensor(reward_multi).float().to(self.device)
self.eps_len += 1
self.hself=hn_self
self.hToM=hn_ToM
self.env_step += 1
if self.env_step >= self.env.max_steps:
self.done = True
def action_test(self):
if self.args.mask_actions:
available_actions = self.get_available_actions()
else:
available_actions = None
with torch.no_grad():
self.poses = self.get_other_poses()
self.mask = self.get_mask()
value_multi, actions, entropy, log_prob, hn_self, hn_ToM, ToM_goals, edge_logits, comm_edges, probs, real_cover, ToM_target_cover=\
self.model(self.state, self.hself, self.hToM, self.poses, self.mask, True, available_actions = available_actions)
self.comm_cnt = torch.sum(comm_edges)
self.comm_bit = self.comm_cnt * self.num_targets
self.env.comm_edges = comm_edges
'''
# compute ToM prediction accuracy
ToM_goal = (ToM_goals[:,:,:,-1]>=0.1).unsqueeze(-1) # n * n-1 * m * 1
random_ToM_goal = torch.randint(2,(self.num_agents,self.num_agents-1,self.num_targets,1))
real_goal = torch.from_numpy(actions)
real_goal = real_goal.unsqueeze(0).repeat(self.num_agents,1,1,1)
idx= (torch.ones(self.num_agents, self.num_agents) - torch.diag(torch.ones(self.num_agents))).bool()
real_goal = real_goal[idx].reshape(self.num_agents, self.num_agents-1, self.num_targets, -1)
ToM_cover = (ToM_target_cover >= 0.1)
random_ToM_cover = torch.randint(2,(self.num_agents,self.num_agents-1,self.num_targets,1))
self.ToM_acc = (ToM_goal==real_goal)[real_cover].float()
self.ToM_acc = torch.mean(self.ToM_acc)
self.ToM_target_acc = torch.mean((real_cover==ToM_cover)[real_cover].float())
self.random_ToM_acc = torch.mean((random_ToM_goal==real_goal)[real_cover].float())
self.random_ToM_target_acc = torch.mean((real_cover==random_ToM_cover)[real_cover].float())
#print(torch.mean(ToM_goal.float()))
'''
state_multi, self.reward, self.done, self.info = self.env.step(actions)#, obstacle=True)
if isinstance(self.done, list): self.done = np.sum(self.done)
self.state = torch.from_numpy(np.array(state_multi)).float().to(self.device)
self.eps_len += 1
self.hself=hn_self
self.hToM=hn_ToM
self.env_step += 1
if self.env_step >= self.env.max_steps:
self.done = True
def reset(self):
obs = self.env.reset()
self.state = torch.from_numpy(np.array(obs)).float().to(self.device)
self.eps_len = 0
self.eps_num += 1
self.reset_rnn_hidden()
self.model.sample_noise()
def clean_buffer(self, done):
self.env_step = 0
# outputs
self.values = []
self.log_probs = []
self.entropies = []
# gt
self.rewards = []
if done:
# clean
self.rewards_eps = []
return self
def reward_normalizer(self, reward):
reward = np.array(reward)
self.num_steps += 1
if self.num_steps == 1:
self.reward_mean = reward
self.vk = 0
self.reward_std = 1
else:
delt = reward - self.reward_mean
self.reward_mean = self.reward_mean + delt/self.num_steps
self.vk = self.vk + delt * (reward-self.reward_mean)
self.reward_std = np.sqrt(self.vk/(self.num_steps - 1))
reward = (reward - self.reward_mean) / (self.reward_std + 1e-8)
return reward
def reset_rnn_hidden(self):
self.hself = torch.zeros(self.num_agents, self.lstm_out).to(self.device)
self.hToM = torch.zeros(self.num_agents, self.num_agents, self.lstm_out).to(self.device)
def update_rnn_hidden(self):
self.hself = Variable(self.hself.data)
self.hToM = Variable(self.hToM.data)