-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathbacktest_strategies.py
614 lines (580 loc) · 22.9 KB
/
backtest_strategies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 22 20:55:00 2022
@author: user
"""
import talib
import kbars
import ShioajiLogin
import matplotlib.pyplot as plt
import pandas as pd
import numpy
import backtesttool
ENABLEDEBUG=0
#########################################
#MACD指標
###########################################
#使用快慢線交叉當作買賣訊號
def createSignalMACD(close,
periodFast,
periodSlow,
periodSignal):
macd, macdsignal, macdhist =talib.MACD(close
,fastperiod=periodFast
,slowperiod=periodSlow
,signalperiod=periodSignal)
ENABLESHORT=False
#允許放空的訊號寫法
if(ENABLESHORT):
BuySignal=(macdhist>0).astype(int)
ShortSignal=(macdhist<0).astype(int)
return BuySignal-ShortSignal
#不允許放空的訊號寫法,兩個差在允許放空的部分多了ShortSignal
else:
BuySignal=(macdhist>0).astype(int)
return BuySignal
#找出MACD買賣訊號的最佳化參數
def OptimizeMACD(
df,
rangeFast,#=numpy.arange(2,100,1,dtype=int)
rangeSlow,#=numpy.arange(2,100,1,dtype=int)
rangeSignal#=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
bestperiodFast=0
bestperiodSlow=0
bestperiodSignal=0
for periodFast in rangeFast:
for periodSlow in rangeSlow:
for periodSignal in rangeSignal:
if(ENABLEDEBUG):
print("periodFast:"+str(periodFast))
print("periodSlow:"+str(periodSlow))
print("periodSignal:"+str(periodSignal))
#錯誤檢查,快線週期要比慢線短
if(periodFast>=periodSlow):
continue
#製作買賣訊號
BuySignal=createSignalMACD(closePrice,
periodFast,
periodSlow,
periodSignal)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
bestperiodFast=periodFast
bestperiodSlow=periodSlow
bestperiodSignal=periodSignal
return bestret,bestret_series,(bestperiodFast,bestperiodSlow,bestperiodSignal)
#########################################
#KD指標
###########################################
#使用KD交叉當作買賣訊號
def createSignalKD(high,low,close,
fastk=5,
slowk=3,
slowd=3):
slowk, slowd = talib.STOCH(high, low, close,
fastk_period=fastk,
slowk_period=slowk,
slowk_matype=talib.MA_Type.SMA,
slowd_period=slowd,
slowd_matype=talib.MA_Type.SMA
)
ENABLESHORT=False
#允許放空的訊號寫法
if(ENABLESHORT):
BuySignal=(slowk>slowd).astype(int)
ShortSignal=(slowk<slowd).astype(int)
return BuySignal-ShortSignal
#不允許放空的訊號寫法,兩個差在允許放空的部分多了ShortSignal
else:
BuySignal=(slowk>slowd).astype(int)
return BuySignal
#找出KD買賣訊號的最佳化參數
def OptimizeKD(
df,
range_fastk,#=numpy.arange(2,100,1,dtype=int)
range_slowk,#=numpy.arange(2,100,1,dtype=int)
range_slowd#=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
highPrice=df['High']
lowPrice=df['Low']
bestret=0
bestret_series=[]
best_fastk=0
best_slowk=0
best_slowd=0
for fastk in range_fastk:
for slowk in range_slowk:
for slowd in range_slowd:
if(ENABLEDEBUG):
print("fastk:"+str(fastk))
print("slowk:"+str(slowk))
print("slowd:"+str(slowd))
#製作買賣訊號
BuySignal=createSignalKD(highPrice,lowPrice,closePrice,
fastk,
slowk,
slowd)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_fastk=fastk
best_slowk=slowk
best_slowd=slowd
return bestret,bestret_series,(best_fastk,best_slowk,best_slowd)
#########################################
#RSI指標
###########################################
#使用RSI往上穿越longTH做多,往下穿越shortTH做空的買賣策略
#longTH>shortTH,longTH預設值為70,shortTH預設值為30
def createSignalRSI(close,
timeperiod=14,
longTH=70,
shortTH=30):
real = talib.RSI(close, timeperiod=timeperiod)
ENABLESHORT=False
if(ENABLESHORT):
BuySignal=(real>longTH).astype(int)
ShortSignal=(real<shortTH).astype(int)
return BuySignal-ShortSignal
else:
BuySignal=(real>longTH).astype(int)
return BuySignal
#找出RSI買賣訊號的最佳化參數
def OptimizeRSI(
df,
range_period,#=numpy.arange(2,100,1,dtype=int)
range_longTH,#=numpy.arange(2,100,1,dtype=int)
range_shortTH#=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
best_period=0
best_longTH=0
best_shortTH=0
for period in range_period:
for longTH in range_longTH:
for shortTH in range_shortTH:
if(ENABLEDEBUG):
print("period:"+str(period))
print("longTH:"+str(longTH))
print("shortTH:"+str(shortTH))
if(longTH<=shortTH):
continue
#製作買賣訊號
BuySignal=createSignalRSI(closePrice,
period,
longTH,
shortTH)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_period=period
best_longTH=longTH
best_shortTH=shortTH
return bestret,bestret_series,(best_period,best_longTH,best_shortTH)
#########################################
#布林通道
###########################################
#這邊的布林通道交易訊號使用以下連結的
#https://www.investopedia.com/trading/using-bollinger-bands-to-gauge-trends/#:~:text=Bollinger%20Bands%C2%AE%20are%20a%20trading%20tool%20used%20to%20determine,lot%20of%20other%20relevant%20information.
#Create Multiple Bands for Greater Insight
def createSignalBBAND(close,
timeperiod=20,
SmallStdDev=1.0,
LargeStdDev=2.0):
upperband_Small, middleband_Small, lowerband_Small = \
talib.BBANDS(close,
timeperiod=timeperiod,
nbdevup=SmallStdDev,
nbdevdn=SmallStdDev,
matype=talib.MA_Type.SMA)
upperband_Large, middleband_Large, lowerband_Large = \
talib.BBANDS(close,
timeperiod=timeperiod,
nbdevup=LargeStdDev,
nbdevdn=LargeStdDev,
matype=talib.MA_Type.SMA)
ENABLESHORT=True
#允許放空的訊號寫法
if(ENABLESHORT):
BuySignal=((close>=upperband_Small) & (close<=upperband_Large)).astype(int)
ShortSignal=((close>=lowerband_Large) & (close<=lowerband_Small)).astype(int)
return BuySignal-ShortSignal
#不允許放空的訊號寫法,兩個差在允許放空的部分多了ShortSignal
else:
BuySignal=((close>=upperband_Small) & (close<=upperband_Large)).astype(int)
return BuySignal
#找出BBAND買賣訊號的最佳化參數
def OptimizeBBAND(
df,
range_period,#=numpy.arange(2,100,1,dtype=int)
range_SmallStdDev,#=numpy.arange(0.5,5,0.5,dtype=float)
range_LargeStdDev#=numpy.arange(0.5,5,0.5,dtype=float)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
best_period=0
best_SmallStdDev=0
best_LargeStdDev=0
for period in range_period:
for SmallStdDev in range_SmallStdDev:
for LargeStdDev in range_LargeStdDev:
if(ENABLEDEBUG):
print("period:"+str(period))
print("SmallStdDev:"+str(SmallStdDev))
print("LargeStdDev:"+str(LargeStdDev))
if(LargeStdDev<=SmallStdDev):
continue
#製作買賣訊號
BuySignal=createSignalBBAND(closePrice,
timeperiod=period,
SmallStdDev=SmallStdDev,
LargeStdDev=LargeStdDev)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_period=period
best_SmallStdDev=SmallStdDev
best_LargeStdDev=LargeStdDev
return bestret,bestret_series,(best_period,best_SmallStdDev,best_LargeStdDev)
#########################################
#價格通道
###########################################
#當最高價創新高的時候做多,最低價創新低的時候做空
def createSignalPriceChannel(
df,period):
high=df['High']
low=df['Low']
#創新高買進訊號
BuySignal=(high==high.rolling(period).max()).astype(int)
#創新低買進訊號
SellSignal=(low==low.rolling(period).min()).astype(int)
signal=BuySignal-SellSignal
#上面的買賣訊號只有在穿過通道線的時候才有值,這邊用一些小技巧把中間的數值也填上去
signal[signal==0]=float("NaN")
signal[0]=0
signal=signal.fillna(method="ffill")
ENABLESHORT=False
if(not ENABLESHORT):
signal[signal<0]=0
return signal
#找出價格通道買賣訊號的最佳化參數
def OptimizePriceChannel(
df,
range_period#=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
best_period=0
for period in range_period:
if(ENABLEDEBUG):
print("period:"+str(period))
#製作買賣訊號
BuySignal=createSignalPriceChannel(df,period)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_period=period
return bestret,bestret_series,(best_period)
#########################################
#網格交易策略
###########################################
#根據乖離率低買高賣的策略
def createGridSignal(df,
BiasUpperLimit,
UpperLimitPosition,
BiasLowerLimit,
LowerLimitPosition,
BiasPeriod):
close=df['Close']
Bias=close/close.rolling(window=BiasPeriod).mean()
Bias=Bias.fillna(method='bfill')
positiondiff=UpperLimitPosition-LowerLimitPosition
biasdiff=BiasUpperLimit-BiasLowerLimit
position=LowerLimitPosition+(Bias-BiasLowerLimit)*positiondiff/biasdiff
position[Bias<=BiasLowerLimit]=LowerLimitPosition
position[Bias>=BiasUpperLimit]=UpperLimitPosition
return position
def OptimizeGrid(
df,
range_BiasUpper,#=numpy.arange(1.0,2.0,0.1,dtype=float)
range_UpperPosition,#=numpy.arange(0.1,0.5,0.1,dtype=float)
range_BiasLower,#=numpy.arange(0.5,1.0,0.1,dtype=float)
range_LowerPosition,#=numpy.arange(0.5,1.0,0.1,dtype=float)
range_period #=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
best_BiasUpper=0
best_UpperPosition=0
best_BiasLower=0
best_LowerPosition=0
best_period=0
for BiasUpper in range_BiasUpper:
for UpperPosition in range_UpperPosition:
for BiasLower in range_BiasLower:
for LowerPosition in range_LowerPosition:
for period in range_period:
if(ENABLEDEBUG):
print("BiasUpper:"+str(BiasUpper))
print("UpperPosition:"+str(UpperPosition))
print("BiasLower:"+str(BiasLower))
print("LowerPosition:"+str(LowerPosition))
print("period:"+str(period))
if(BiasUpper<=BiasLower):
continue
if(UpperPosition>=LowerPosition):
continue
#製作買賣訊號
BuySignal=createGridSignal(df,
BiasUpper,
UpperPosition,
BiasLower,
LowerPosition,
period)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_BiasUpper=BiasUpper
best_UpperPosition=UpperPosition
best_BiasLower=BiasLower
best_LowerPosition=LowerPosition
best_period=period
return bestret,bestret_series,\
(best_BiasUpper,best_UpperPosition,best_BiasLower,best_LowerPosition,best_period)
if __name__ == '__main__':
#從資料庫讀取小型台指歷史資料
df_MXFR1=kbars.readKbarsFromDB('MXFR1')
df_MXFR1=kbars.resampleKbars(df_MXFR1,period='1h')
close=df_MXFR1['Close']
high=df_MXFR1['High']
low=df_MXFR1['Low']
#選項:
#'MACD'
#'KD'
#'RSI'
#'BBAND'
#'PriceChannel'
#'Grid'
target='PriceChannel'
if(target=='MACD'):
#最佳化Fast,Slow,Signal
rangeFast=numpy.arange(2,100,1,dtype=int)
rangeSlow=numpy.arange(2,100,1,dtype=int)
rangeSignal=numpy.arange(2,100,1,dtype=int)
bestret,bestret_series,parameters=OptimizeMACD(
df_MXFR1,
rangeFast,#=numpy.arange(2,100,1,dtype=int)
rangeSlow,#=numpy.arange(2,100,1,dtype=int)
rangeSignal#=numpy.arange(2,100,1,dtype=int)
)
print('MACD bestret:'+str(bestret))
print('MACD MDD:'+str(backtesttool.calculateMDD(bestret_series)))
if(target=='KD'):
#最佳化fastk,slowk,slowd
range_fastk=numpy.arange(2,100,1,dtype=int)
range_slowk=numpy.arange(2,100,1,dtype=int)
range_slowd=numpy.arange(2,100,1,dtype=int)
bestret,bestret_series,parameters=OptimizeKD(
df_MXFR1,
range_fastk,
range_slowk,
range_slowd
)
print('KD bestret:'+str(bestret))
print('KD MDD:'+str(backtesttool.calculateMDD(bestret_series)))
if(target=='RSI'):
#最佳化period,longTH,shortTH
range_period=numpy.arange(2,100,1,dtype=int)
range_longTH=numpy.arange(0,100,1,dtype=int)
range_shortTH=numpy.arange(0,100,1,dtype=int)
bestret,bestret_series,parameters=OptimizeRSI(
df_MXFR1,
range_period,
range_longTH,
range_shortTH
)
print('RSI bestret:'+str(bestret))
print('RSI MDD:'+str(backtesttool.calculateMDD(bestret_series)))
if(target=='BBAND'):
#最佳化period,SmallStdDev,LargeStdDev
range_period=numpy.arange(2,100,1,dtype=int)
range_SmallStdDev=numpy.arange(0.5,5,0.5,dtype=float)
range_LargeStdDev=numpy.arange(0.5,5,0.5,dtype=float)
bestret,bestret_series,parameters=OptimizeBBAND(
df_MXFR1,
range_period,
range_SmallStdDev,
range_LargeStdDev
)
print('BBAND bestret:'+str(bestret))
print('BBAND MDD:'+str(backtesttool.calculateMDD(bestret_series)))
if(target=='PriceChannel'):
#最佳化period
range_period=numpy.arange(2,1000,1,dtype=int)
bestret,bestret_series,parameters=OptimizePriceChannel(
df_MXFR1,
range_period
)
print('PriceChannel bestret:'+str(bestret))
print('PriceChannel MDD:'+str(backtesttool.calculateMDD(bestret_series)))
if(target=='Grid'):
import yfinance as yf
tw = yf.Ticker("0052.tw")
TW_hist = tw.history(period="5y")
us = yf.Ticker("00662.tw")
US_hist = us.history(period="5y")
#兩邊歷史資料長度不一樣,取交集
idx = numpy.intersect1d(TW_hist.index, US_hist.index)
TW_hist = TW_hist.loc[idx]
US_hist = US_hist.loc[idx]
TW_open=TW_hist['Open']
TW_close=TW_hist['Close']
TW_high=TW_hist['High']
TW_low=TW_hist['Low']
US_open=US_hist['Open']
US_close=US_hist['Close']
US_high=US_hist['High']
US_low=US_hist['Low']
kbars = pd.DataFrame(\
{'ts':TW_close.index\
,'Close':TW_close/US_close\
,'Open':TW_open/US_open\
,'High':TW_high/US_low\
,'Low':TW_low/US_high}).dropna()
#最佳化 BiasUpper,BiasLower,period
range_BiasUpper=numpy.arange(1.0,2.0,0.1,dtype=float)
range_UpperPosition=numpy.arange(0.1,0.2,0.1,dtype=float)
range_BiasLower=numpy.arange(0.5,1.0,0.1,dtype=float)
range_LowerPosition=numpy.arange(0.9,1.0,0.1,dtype=float)
range_period=numpy.arange(2,100,1,dtype=int)
bestret,bestret_series,parameters=OptimizeGrid(
kbars,
range_BiasUpper,
range_UpperPosition,
range_BiasLower,
range_LowerPosition,
range_period
)
(best_BiasUpper,\
best_UpperPosition,\
best_BiasLower,\
best_LowerPosition,\
best_period)=parameters
#最佳化 range_UpperPosition,range_LowerPosition,range_period
range_BiasUpper=numpy.arange(best_BiasUpper,best_BiasUpper+0.1,0.1,dtype=float)
range_UpperPosition=numpy.arange(0.1,0.5,0.1,dtype=float)
range_BiasLower=numpy.arange(best_BiasLower,best_BiasLower+0.1,0.1,dtype=float)
range_LowerPosition=numpy.arange(0.5,1.0,0.1,dtype=float)
range_period=numpy.arange(2,100,1,dtype=int)
bestret,bestret_series,parameters=OptimizeGrid(
kbars,
range_BiasUpper,
range_UpperPosition,
range_BiasLower,
range_LowerPosition,
range_period
)
(best_BiasUpper,\
best_UpperPosition,\
best_BiasLower,\
best_LowerPosition,\
best_period)=parameters
#最佳化 BiasUpper,BiasLower,range_period
range_BiasUpper=numpy.arange(1.0,2.0,0.1,dtype=float)
range_UpperPosition=numpy.arange(best_UpperPosition,best_UpperPosition+0.1,0.1,dtype=float)
range_BiasLower=numpy.arange(0.5,1.0,0.1,dtype=float)
range_LowerPosition=numpy.arange(best_LowerPosition,best_LowerPosition+0.1,0.1,dtype=float)
range_period=numpy.arange(2,100,1,dtype=int)
bestret,bestret_series,parameters=OptimizeGrid(
kbars,
range_BiasUpper,
range_UpperPosition,
range_BiasLower,
range_LowerPosition,
range_period
)
### 跨市網格交易報酬計算 ###
(best_BiasUpper\
,best_UpperPosition\
,best_BiasLower\
,best_LowerPosition\
,best_period)=parameters
position=createGridSignal(kbars,
best_BiasUpper,
best_UpperPosition,
best_BiasLower,
best_LowerPosition,
best_period)
buyTW=position
buyUS=1.0-position
retTW,retseriesTW=backtesttool.backtest_signal(TW_open,buyTW,tradecost=0.0000176)
retUS,retseriesUS=backtesttool.backtest_signal(US_open,buyUS,tradecost=0.0000176)
retseries=(retseriesTW-1.0)+(retseriesUS-1.0)+1.0
prefixProfit=backtesttool.prefixProd(retseries)
#plt.plot(buyTW,color='red')
print('strategyMDD:',backtesttool.calculateMDD(retseries))
print('USMDD:',backtesttool.calculateMDD_fromClose(US_close))
print('TWMDD:',backtesttool.calculateMDD_fromClose(TW_close))
print('strategyProfit:',prefixProfit.tolist()[-1]/prefixProfit.tolist()[0])
print('USProfit:',US_close.tolist()[-1]/US_close.tolist()[0])
print('TWProfit:',TW_close.tolist()[-1]/TW_close.tolist()[0])
plt.plot(numpy.log10(
backtesttool.prefixProd(retseries))
,color='green')
plt.title('Grid Profit(log)')
plt.show()
plt.plot(numpy.log10(TW_close/TW_close[0])
,color='green')
plt.title('TW Profit(log)')
plt.show()
plt.plot(numpy.log10(US_close/US_close[0])
,color='green')
plt.title('US Profit(log)')
plt.show()