-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathch5_Strategies.py
856 lines (810 loc) · 29.5 KB
/
ch5_Strategies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
# -*- coding: utf-8 -*-
"""
Created on Tue Feb 22 20:55:00 2022
@author: user
"""
import talib
import kbars
import ShioajiLogin
import matplotlib.pyplot as plt
import pandas as pd
import numpy
import backtesttool
#從資料庫讀取小型台指歷史資料
df_MXFR1=kbars.readKbarsFromDB('MXFR1')
df_MXFR1=kbars.resampleKbars(df_MXFR1,period='1h')
close=df_MXFR1['Close']
high=df_MXFR1['High']
low=df_MXFR1['Low']
#選項:
#'MACD'
#'KD'
#'RSI'
#'BBAND'
#'PriceChannel'
#'Grid'
target='Grid'
#########################################
#5.1 MACD指標
###########################################
#製作MACD指標
#macd:快線,12日均線(EMA)-26日均線(EMA)
#macdsignal:慢線,快線的九天平均(EMA)
#macdhist:MACD柱,快線-慢縣
macd, macdsignal, macdhist =talib.MACD(close
,fastperiod=12
,slowperiod=26
,signalperiod=9)
if(target=='MACD'):
ma_short=talib.EMA(close,12)
ma_long=talib.EMA(close,26)
plt.title('EMA(12)-EMA(26)')
plt.plot((ma_short-ma_long)[-100:-1],color='green')
plt.show()
plt.title('macd')
plt.plot(macd[-100:-1],color='green')
plt.show()
plt.title('macd-macdsignal')
plt.plot((macd-macdsignal)[-100:-1],color='green')
plt.show()
plt.title('macdhist')
plt.plot(macdhist[-100:-1],color='green')
plt.show()
#使用快慢線交叉當作買賣訊號
def createSignalMACD(close,
periodFast,
periodSlow,
periodSignal):
macd, macdsignal, macdhist =talib.MACD(close
,fastperiod=periodFast
,slowperiod=periodSlow
,signalperiod=periodSignal)
ENABLESHORT=False
#允許放空的訊號寫法
if(ENABLESHORT):
BuySignal=(macdhist>0).astype(int)
ShortSignal=(macdhist<0).astype(int)
return BuySignal-ShortSignal
#不允許放空的訊號寫法,兩個差在允許放空的部分多了ShortSignal
else:
BuySignal=(macdhist>0).astype(int)
return BuySignal
#找出MACD買賣訊號的最佳化參數
def OptimizeMACD(
df,
rangeFast,#=numpy.arange(2,100,1,dtype=int)
rangeSlow,#=numpy.arange(2,100,1,dtype=int)
rangeSignal#=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
bestperiodFast=0
bestperiodSlow=0
bestperiodSignal=0
for periodFast in rangeFast:
for periodSlow in rangeSlow:
for periodSignal in rangeSignal:
print("periodFast:"+str(periodFast))
print("periodSlow:"+str(periodSlow))
print("periodSignal:"+str(periodSignal))
#錯誤檢查,快線週期要比慢線短
if(periodFast>=periodSlow):
continue
#製作買賣訊號
BuySignal=createSignalMACD(closePrice,
periodFast,
periodSlow,
periodSignal)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
bestperiodFast=periodFast
bestperiodSlow=periodSlow
bestperiodSignal=periodSignal
return bestret,bestret_series,(bestperiodFast,bestperiodSlow,bestperiodSignal)
if(target=='MACD'):
#最佳化Fast,Slow,Signal
rangeFast=numpy.arange(2,100,1,dtype=int)
rangeSlow=numpy.arange(2,100,1,dtype=int)
rangeSignal=numpy.arange(2,100,1,dtype=int)
bestret,bestret_series,parameters=OptimizeMACD(
df_MXFR1,
rangeFast,#=numpy.arange(2,100,1,dtype=int)
rangeSlow,#=numpy.arange(2,100,1,dtype=int)
rangeSignal#=numpy.arange(2,100,1,dtype=int)
)
print('MACD bestret:'+str(bestret))
print('MACD MDD:'+str(backtesttool.calculateMDD(bestret_series)))
plt.plot(numpy.log10(
backtesttool.prefixProd(bestret_series))
,color='green')
plt.title('MACD Profit(log)')
plt.show()
#########################################
#5.2 KD指標
###########################################
#裡面的參數是預設值,如果把fastk_period的數值改成9就是坊間使用的KD指標設定
#RSV線:(收盤價-最近a天最低價)/(最近a天最高價-最近a天最低價), a=fastk_period
#slowk為K值=k天RSV平均,b=slowk_period
#slowd為D值=d天slowk平均,c=slowd_period
#K往上穿越D為黃金交叉,做多
#K往下穿越D為死亡交叉,做空
slowk, slowd = talib.STOCH(high, low, close,
fastk_period=5,
slowk_period=3,
slowk_matype=talib.MA_Type.SMA,
slowd_period=3,
slowd_matype=talib.MA_Type.SMA
)
if(target=='KD'):
rollingHigh=high.rolling(5).max()
rollingLow=low.rolling(5).min()
RSV=(close-rollingLow)/(rollingHigh-rollingLow)
plt.plot(talib.SMA(RSV,3)[-100:-1])
plt.title('SMA(RSV,3)')
plt.show()
plt.plot(slowk[-100:-1])
plt.title('slowk')
plt.show()
plt.plot(talib.SMA(slowk,3)[-100:-1])
plt.title('SMA(slowk,3)')
plt.show()
plt.plot(slowd[-100:-1])
plt.title('slowd')
plt.show()
plt.plot((slowk-slowd)[-100:-1])
plt.title('KD signal(slowk-slowd)')
plt.show()
#使用KD交叉當作買賣訊號
def createSignalKD(high,low,close,
fastk=5,
slowk=3,
slowd=3):
slowk, slowd = talib.STOCH(high, low, close,
fastk_period=fastk,
slowk_period=slowk,
slowk_matype=talib.MA_Type.SMA,
slowd_period=slowd,
slowd_matype=talib.MA_Type.SMA
)
ENABLESHORT=False
#允許放空的訊號寫法
if(ENABLESHORT):
BuySignal=(slowk>slowd).astype(int)
ShortSignal=(slowk<slowd).astype(int)
return BuySignal-ShortSignal
#不允許放空的訊號寫法,兩個差在允許放空的部分多了ShortSignal
else:
BuySignal=(slowk>slowd).astype(int)
return BuySignal
#找出KD買賣訊號的最佳化參數
def OptimizeKD(
df,
range_fastk,#=numpy.arange(2,100,1,dtype=int)
range_slowk,#=numpy.arange(2,100,1,dtype=int)
range_slowd#=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
highPrice=df['High']
lowPrice=df['Low']
bestret=0
bestret_series=[]
best_fastk=0
best_slowk=0
best_slowd=0
for fastk in range_fastk:
for slowk in range_slowk:
for slowd in range_slowd:
print("fastk:"+str(fastk))
print("slowk:"+str(slowk))
print("slowd:"+str(slowd))
#製作買賣訊號
BuySignal=createSignalKD(highPrice,lowPrice,closePrice,
fastk,
slowk,
slowd)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_fastk=fastk
best_slowk=slowk
best_slowd=slowd
return bestret,bestret_series,(best_fastk,best_slowk,best_slowd)
if(target=='KD'):
#最佳化fastk,slowk,slowd
range_fastk=numpy.arange(2,100,1,dtype=int)
range_slowk=numpy.arange(2,100,1,dtype=int)
range_slowd=numpy.arange(2,100,1,dtype=int)
bestret,bestret_series,parameters=OptimizeKD(
df_MXFR1,
range_fastk,
range_slowk,
range_slowd
)
print('KD bestret:'+str(bestret))
print('KD MDD:'+str(backtesttool.calculateMDD(bestret_series)))
plt.plot(numpy.log10(
backtesttool.prefixProd(bestret_series))
,color='green')
plt.title('KD Profit(log)')
plt.show()
#########################################
#5.3 RSI指標
###########################################
#定義為n日內漲幅平均值/(n日內跌幅平均值+n日內漲幅平均值)
real = talib.RSI(close, timeperiod=14)
if(target=='RSI'):
#計算漲跌幅,並且把漲幅寫到pos,把跌幅寫到neg
pos=close.copy()-close.shift(1)
neg=close.copy()-close.shift(1)
pos[0]=pos[1]
neg[0]=neg[1]
pos[pos<0]=0
neg[neg>0]=0
#轉成絕對值,拿掉正負號
pos=pos.abs()
neg=neg.abs()
#算平均值
posSMA=talib.SMA(pos,14)
negSMA=talib.SMA(neg,14)
RSI=posSMA/((posSMA+negSMA))
plt.plot(RSI[-100:-1]*100)
plt.title('RSI(implement with SMA)')
plt.show()
plt.plot(real[-100:-1])
plt.title('real')
plt.show()
#https://en.wikipedia.org/wiki/Moving_average#Modified_moving_average
def SMMA(s_in,period):
s_out=s_in.copy()
for i in range(1,s_in.size,1):
if(i<period):
s_out[i]=s_out[i-1]*i/(i+1)+s_in[i]/(i+1)
else:
s_out[i]=s_out[i-1]*(period-1)/(period)\
+s_in[i]/(period)
return s_out
posSMMA=SMMA(pos,14)
negSMMA=SMMA(neg,14)
RSI=posSMMA/((posSMMA+negSMMA))
plt.plot(RSI[-100:-1]*100)
plt.title('RSI(SMMA)')
plt.show()
real2 = talib.RSI(close[-100:-1], timeperiod=14)
plt.plot(real[-80:-1],'green')
plt.plot(real2[-80:-1],'red')
plt.title('original RSI vs RSI with only 100 kbars as input')
plt.show()
#使用RSI往上穿越longTH做多,往下穿越shortTH做空的買賣策略
#longTH>shortTH,longTH預設值為70,shortTH預設值為30
def createSignalRSI(close,
timeperiod=14, longTH=70,
shortTH=30):
real = talib.RSI(close, timeperiod=timeperiod)
ENABLESHORT=False
if(ENABLESHORT):
BuySignal=(real>longTH).astype(int)
ShortSignal=(real<shortTH).astype(int)
return BuySignal-ShortSignal
else:
BuySignal=(real>longTH).astype(int)
return BuySignal
#找出RSI買賣訊號的最佳化參數
def OptimizeRSI(
df,
range_period,#=numpy.arange(2,100,1,dtype=int)
range_longTH,#=numpy.arange(2,100,1,dtype=int)
range_shortTH#=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
best_period=0
best_longTH=0
best_shortTH=0
for period in range_period:
for longTH in range_longTH:
for shortTH in range_shortTH:
print("period:"+str(period))
print("longTH:"+str(longTH))
print("shortTH:"+str(shortTH))
if(longTH<=shortTH):
continue
#製作買賣訊號
BuySignal=createSignalRSI(closePrice,
period,
longTH,
shortTH)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_period=period
best_longTH=longTH
best_shortTH=shortTH
return bestret,bestret_series,(best_period,best_longTH,best_shortTH)
if(target=='RSI'):
#最佳化period,longTH,shortTH
range_period=numpy.arange(2,100,1,dtype=int)
range_longTH=numpy.arange(0,100,1,dtype=int)
range_shortTH=numpy.arange(0,100,1,dtype=int)
bestret,bestret_series,parameters=OptimizeRSI(
df_MXFR1,
range_period,
range_longTH,
range_shortTH
)
print('RSI bestret:'+str(bestret))
print('RSI MDD:'+str(backtesttool.calculateMDD(bestret_series)))
plt.plot(numpy.log10(
backtesttool.prefixProd(bestret_series))
,color='green')
plt.title('RSI Profit(log)')
plt.show()
#########################################
#5.4 布林通道
###########################################
upperband, middleband, lowerband = \
talib.BBANDS(close,
timeperiod=5,
nbdevup=2,
nbdevdn=2,
matype=talib.MA_Type.SMA)
if(target=='BBAND'):
timeperiod=20
SmallStdDev=1.0
LargeStdDev=2.0
upperband_Small, middleband_Small, lowerband_Small = \
talib.BBANDS(close,
timeperiod=timeperiod,
nbdevup=SmallStdDev,
nbdevdn=SmallStdDev,
matype=talib.MA_Type.SMA)
upperband_Large, middleband_Large, lowerband_Large = \
talib.BBANDS(close,
timeperiod=timeperiod,
nbdevup=LargeStdDev,
nbdevdn=LargeStdDev,
matype=talib.MA_Type.SMA)
plt.plot(middleband_Small[-200:-1]
,color='green')
plt.plot(upperband_Small[-200:-1]
,color='blue')
plt.plot(lowerband_Small[-200:-1]
,color='blue')
plt.plot(lowerband_Large[-200:-1]
,color='red')
plt.plot(upperband_Large[-200:-1]
,color='red')
plt.title('BollingerBand Example')
plt.show()
#這邊的布林通道交易訊號使用以下連結的
#https://www.investopedia.com/trading/using-bollinger-bands-to-gauge-trends/#:~:text=Bollinger%20Bands%C2%AE%20are%20a%20trading%20tool%20used%20to%20determine,lot%20of%20other%20relevant%20information.
#Create Multiple Bands for Greater Insight
def createSignalBBAND(close,
timeperiod=20,
SmallStdDev=1.0,
LargeStdDev=2.0):
upperband_Small, middleband_Small, lowerband_Small = \
talib.BBANDS(close,
timeperiod=timeperiod,
nbdevup=SmallStdDev,
nbdevdn=SmallStdDev,
matype=talib.MA_Type.SMA)
upperband_Large, middleband_Large, lowerband_Large = \
talib.BBANDS(close,
timeperiod=timeperiod,
nbdevup=LargeStdDev,
nbdevdn=LargeStdDev,
matype=talib.MA_Type.SMA)
ENABLESHORT=True
#允許放空的訊號寫法
if(ENABLESHORT):
BuySignal=((close>=upperband_Small) & (close<=upperband_Large)).astype(int)
ShortSignal=((close>=lowerband_Large) & (close<=lowerband_Small)).astype(int)
return BuySignal-ShortSignal
#不允許放空的訊號寫法,兩個差在允許放空的部分多了ShortSignal
else:
BuySignal=((close>=upperband_Small) & (close<=upperband_Large)).astype(int)
return BuySignal
#找出BBAND買賣訊號的最佳化參數
def OptimizeBBAND(
df,
range_period,#=numpy.arange(2,100,1,dtype=int)
range_SmallStdDev,#=numpy.arange(0.5,5,0.5,dtype=float)
range_LargeStdDev#=numpy.arange(0.5,5,0.5,dtype=float)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
best_period=0
best_SmallStdDev=0
best_LargeStdDev=0
for period in range_period:
for SmallStdDev in range_SmallStdDev:
for LargeStdDev in range_LargeStdDev:
print("period:"+str(period))
print("SmallStdDev:"+str(SmallStdDev))
print("LargeStdDev:"+str(LargeStdDev))
if(LargeStdDev<=SmallStdDev):
continue
#製作買賣訊號
BuySignal=createSignalBBAND(closePrice,
timeperiod=period,
SmallStdDev=SmallStdDev,
LargeStdDev=LargeStdDev)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_period=period
best_SmallStdDev=SmallStdDev
best_LargeStdDev=LargeStdDev
return bestret,bestret_series,(best_period,best_SmallStdDev,best_LargeStdDev)
if(target=='BBAND'):
#最佳化period,SmallStdDev,LargeStdDev
range_period=numpy.arange(2,100,1,dtype=int)
range_SmallStdDev=numpy.arange(0.5,3,0.1,dtype=float)
range_LargeStdDev=numpy.arange(0.5,3,0.1,dtype=float)
bestret,bestret_series,parameters=OptimizeBBAND(
df_MXFR1,
range_period,
range_SmallStdDev,
range_LargeStdDev
)
print('BBAND bestret:'+str(bestret))
print('BBAND MDD:'+str(backtesttool.calculateMDD(bestret_series)))
plt.plot(numpy.log10(
backtesttool.prefixProd(bestret_series))
,color='green')
plt.title('BBAND Profit(log)')
plt.show()
#########################################
#5.5 價格通道
###########################################
#價格通道就是過去一段時間的最高價和最低價組成的通道線
#當最高價創新高的時候做多,最低價創新低的時候做空
if(target=='PriceChannel'):
period=20
channel_high=high.rolling(period).max()
channel_low=low.rolling(period).min()
plt.plot(close[-50:-1]
,color='green')
plt.plot(channel_high[-50:-1]
,color='blue')
plt.plot(channel_low[-50:-1]
,color='blue')
plt.plot(high[-50:-1]
,color='red'
, marker='o')
plt.plot(low[-50:-1]
,color='green'
, marker='o')
plt.title('PriceChannel Example')
plt.show()
def createSignalPriceChannel(
df,period):
high=df['High']
low=df['Low']
#創新高買進訊號
BuySignal=(high==high.rolling(period).max()).astype(int)
#創新低買進訊號
SellSignal=(low==low.rolling(period).min()).astype(int)
signal=BuySignal-SellSignal
#上面的買賣訊號只有在穿過通道線的時候才有值,這邊用一些小技巧把中間的數值也填上去
signal[signal==0]=float("NaN")
signal[0]=0
signal=signal.fillna(method="ffill")
ENABLESHORT=False
if(not ENABLESHORT):
signal[signal<0]=0
return signal
#找出價格通道買賣訊號的最佳化參數
def OptimizePriceChannel(
df,
range_period#=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
best_period=0
for period in range_period:
print("period:"+str(period))
#製作買賣訊號
BuySignal=createSignalPriceChannel(df,period)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_period=period
return bestret,bestret_series,(best_period)
if(target=='PriceChannel'):
#最佳化period
range_period=numpy.arange(2,1000,1,dtype=int)
bestret,bestret_series,parameters=OptimizePriceChannel(
df_MXFR1,
range_period
)
print('PriceChannel bestret:'+str(bestret))
print('PriceChannel MDD:'+str(backtesttool.calculateMDD(bestret_series)))
plt.plot(numpy.log10(
backtesttool.prefixProd(bestret_series))
,color='green')
plt.title('PriceChannel Profit(log)')
plt.show()
#########################################
#5.6. 網格交易策略
###########################################
#根據乖離率低買高賣的策略
#在加密貨幣試過現成的網格交易機器人,感覺滿有意思的,所以寫了自己的版本
def createGridSignal(df,
BiasUpperLimit,
UpperLimitPosition,
BiasLowerLimit,
LowerLimitPosition,
BiasPeriod,
USING_LOG=True):
close=df['Close']
Bias=close/close.rolling(window=BiasPeriod).mean()
#LOG實測對ETF配對沒甚麼用,但留著
if(USING_LOG):
Bias=numpy.log(Bias)
BiasUpperLimit=numpy.log(BiasUpperLimit)
BiasLowerLimit=numpy.log(BiasLowerLimit)
Bias=Bias.bfill()
positiondiff=UpperLimitPosition-LowerLimitPosition
biasdiff=BiasUpperLimit-BiasLowerLimit
position=LowerLimitPosition+(Bias-BiasLowerLimit)*positiondiff/biasdiff
position[Bias<=BiasLowerLimit]=LowerLimitPosition
position[Bias>=BiasUpperLimit]=UpperLimitPosition
return position
import ray
@ray.remote
def for_parallel_Grid(df,
BiasUpper,
UpperPosition,
BiasLower,
LowerPosition,
period):
if(BiasUpper<=BiasLower):
return (0,0)
if(UpperPosition>=LowerPosition):
return (0,0)
openPrice=df['Open']
#製作買賣訊號
BuySignal=createGridSignal(df,
BiasUpper,
UpperPosition,
BiasLower,
LowerPosition,
period)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
return (retStrategy,ret_series)
def OptimizeGrid_Ray(
df,
range_BiasUpper,#=numpy.arange(1.0,2.0,0.1,dtype=float)
range_UpperPosition,#=numpy.arange(0.1,0.5,0.1,dtype=float)
range_BiasLower,#=numpy.arange(0.5,1.0,0.1,dtype=float)
range_LowerPosition,#=numpy.arange(0.5,1.0,0.1,dtype=float)
range_period #=numpy.arange(2,100,1,dtype=int)
):
ray.shutdown()
ray.init()
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
best_BiasUpper=0
best_UpperPosition=0
best_BiasLower=0
best_LowerPosition=0
best_period=0
df_shared = ray.put(df)
l=[]
for BiasUpper in range_BiasUpper:
for UpperPosition in range_UpperPosition:
for BiasLower in range_BiasLower:
for LowerPosition in range_LowerPosition:
for period in range_period:
ret= for_parallel_Grid.remote(df_shared,
BiasUpper,
UpperPosition,
BiasLower,
LowerPosition,
period)
l.append(ret)
l=ray.get(l)
l_index=0
dict_ret={}
dict_series={}
for BiasUpper in range_BiasUpper:
for UpperPosition in range_UpperPosition:
for BiasLower in range_BiasLower:
for LowerPosition in range_LowerPosition:
for period in range_period:
result=l[l_index]
key=(BiasUpper,
UpperPosition,
BiasLower,
LowerPosition,
period)
dict_ret[key]=result[0]
dict_series[key]=result[1]
l_index=l_index+1
bestargs=max(dict_ret, key=dict_ret.get)
bestret=dict_ret[bestargs]
bestret_series=dict_series[bestargs]
best_BiasUpper=bestargs[0]
best_UpperPosition=bestargs[1]
best_BiasLower=bestargs[2]
best_LowerPosition=bestargs[3]
best_period=bestargs[4]
return bestret,bestret_series,\
(best_BiasUpper,best_UpperPosition,best_BiasLower,best_LowerPosition,best_period)
def OptimizeGrid(
df,
range_BiasUpper,#=numpy.arange(1.0,2.0,0.1,dtype=float)
range_UpperPosition,#=numpy.arange(0.1,0.5,0.1,dtype=float)
range_BiasLower,#=numpy.arange(0.5,1.0,0.1,dtype=float)
range_LowerPosition,#=numpy.arange(0.5,1.0,0.1,dtype=float)
range_period #=numpy.arange(2,100,1,dtype=int)
):
openPrice=df['Open']
closePrice=df['Close']
bestret=0
bestret_series=[]
best_BiasUpper=0
best_UpperPosition=0
best_BiasLower=0
best_LowerPosition=0
best_period=0
for BiasUpper in range_BiasUpper:
for UpperPosition in range_UpperPosition:
for BiasLower in range_BiasLower:
for LowerPosition in range_LowerPosition:
for period in range_period:
print("BiasUpper:"+str(BiasUpper))
print("UpperPosition:"+str(UpperPosition))
print("BiasLower:"+str(BiasLower))
print("LowerPosition:"+str(LowerPosition))
print("period:"+str(period))
if(BiasUpper<=BiasLower):
continue
if(UpperPosition>=LowerPosition):
continue
#製作買賣訊號
BuySignal=createGridSignal(df,
BiasUpper,
UpperPosition,
BiasLower,
LowerPosition,
period)
#對訊號進行回測
retStrategy,ret_series=backtesttool.backtest_signal(
openPrice
,BuySignal)
#如果結果比之前更好,就記錄下來
if(bestret<retStrategy):
bestret=retStrategy
bestret_series=ret_series
best_BiasUpper=BiasUpper
best_UpperPosition=UpperPosition
best_BiasLower=BiasLower
best_LowerPosition=LowerPosition
best_period=period
return bestret,bestret_series,\
(best_BiasUpper,best_UpperPosition,best_BiasLower,best_LowerPosition,best_period)
if(target=='Grid'):
import yfinance as yf
set1={}
set1['stock1']="0052.tw"
set1['stock2']="00662.tw"
set2={}
set2['stock1']="00652.tw" #india
set2['stock2']="00661.tw" #japan
theset=set1
tw = yf.Ticker(theset['stock1'])
TW_hist = tw.history(period="10y")
us = yf.Ticker(theset['stock2'])
US_hist = us.history(period="10y")
#兩邊歷史資料長度不一樣,取交集
idx = numpy.intersect1d(TW_hist.index, US_hist.index)
TW_hist = TW_hist.loc[idx]
US_hist = US_hist.loc[idx]
TW_open=TW_hist['Open']
TW_close=TW_hist['Close']
TW_high=TW_hist['High']
TW_low=TW_hist['Low']
US_open=US_hist['Open']
US_close=US_hist['Close']
US_high=US_hist['High']
US_low=US_hist['Low']
kbars = pd.DataFrame(\
{'ts':TW_close.index\
,'Close':TW_close/US_close\
,'Open':TW_open/US_open\
,'High':TW_high/US_low\
,'Low':TW_low/US_high}).dropna()
import time
start_time = time.time()
#最佳化 BiasUpper,BiasLower,period
range_BiasUpper=numpy.arange(1.0,2.0,0.1,dtype=float)
range_UpperPosition=numpy.arange(0.1,0.5,0.1,dtype=float)
range_BiasLower=numpy.arange(0.5,1.0,0.1,dtype=float)
range_LowerPosition=numpy.arange(0.5,1.0,0.1,dtype=float)
range_period=numpy.arange(2,250,1,dtype=int)
bestret,bestret_series,parameters=OptimizeGrid_Ray(
kbars,
range_BiasUpper,
range_UpperPosition,
range_BiasLower,
range_LowerPosition,
range_period
)
(best_BiasUpper,\
best_UpperPosition,\
best_BiasLower,\
best_LowerPosition,\
best_period)=parameters
print("--- %s seconds ---" % (time.time() - start_time))
### 跨市網格交易報酬計算 ###
(best_BiasUpper\
,best_UpperPosition\
,best_BiasLower\
,best_LowerPosition\
,best_period)=parameters
position=createGridSignal(kbars,
best_BiasUpper,
best_UpperPosition,
best_BiasLower,
best_LowerPosition,
best_period)
buyTW=position
buyUS=1.0-position
retTW,retseriesTW=backtesttool.backtest_signal(TW_open,buyTW,tradecost=0.0000176)
retUS,retseriesUS=backtesttool.backtest_signal(US_open,buyUS,tradecost=0.0000176)
retseries=(retseriesTW-1.0)+(retseriesUS-1.0)+1.0
prefixProfit=backtesttool.prefixProd(retseries)
#plt.plot(buyTW,color='red')
print('strategyMDD:',backtesttool.calculateMDD(retseries))
print('USMDD:',backtesttool.calculateMDD_fromClose(US_close))
print('TWMDD:',backtesttool.calculateMDD_fromClose(TW_close))
print('strategyProfit:',(prefixProfit.tolist()[-1]/prefixProfit.tolist()[0])-1)
print('USProfit:',(US_close.tolist()[-1]/US_close.tolist()[0])-1)
print('TWProfit:',(TW_close.tolist()[-1]/TW_close.tolist()[0])-1)
plt.plot(numpy.log10(
backtesttool.prefixProd(retseries))
,color='green')
plt.title('Grid Profit(log)')
plt.show()