-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdqn.py
140 lines (106 loc) · 4.57 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import random
import numpy as np
import gym
import tensorflow as tf
import tensorlayer as tl
train_episodes = 1000
batch_size = 32
garmma = 0.9
save = []
class replay_buffer:
def __init__(self):
self.capacity = 10000
self.buffer = []
self.position = 0
def push(self,state,action,reward,next_state,Done):
if len(self.buffer) < self.capacity:
self.buffer.append(None)
self.buffer[self.position] = (state,action,reward,next_state,Done)
self.position = int((self.position+1) % self.capacity)
def sample(self,batches_size):
batch = random.sample(self.buffer,batches_size)
state, action, reward, next_state, done = map(np.stack, zip(*batch))
return state, action, reward, next_state, done
class Agent:
def __init__(self,env):
self.env = env
self.state_dim = env.observation_space.shape[0]
self.action_dim = env.action_space.n
self.model = self.create_network()
self.target_model = self.create_network()
self.model.train()
self.target_model.eval()
self.model_optim = tf.optimizers.Adam(lr = 0.005)
#self.model_traget_optim = tf.optimizers.Adam(lr = 0.01)
self.buffer = replay_buffer()
self.epsilon = 0.15
def create_network(self):
input_layer = tl.layers.Input([None,self.state_dim])
layer1 = tl.layers.Dense(20,act='relu')(input_layer)
#layer2 = tl.layers.Dense(16,activation='relu')(layer1)
output_layer = tl.layers.Dense(self.action_dim)(layer1)
return tl.models.Model(inputs = input_layer, outputs = output_layer)
def traget_update(self):
for weights,target_weights in zip(self.model.trainable_weights, self.target_model.trainable_weights):
target_weights.assign(weights)
def epsilon_greedy(self,state):
if random.random() < self.epsilon:
return random.choice(range(self.action_dim))
else:
state = np.array(state).reshape([1,4])
pred = self.model([state])[0]
return np.argmax(pred)
def replay(self):
for i in range(10):
states,actions,rewards,next_states,dones = self.buffer.sample(batch_size)
target = self.target_model(states).numpy()
next_target = self.target_model(next_states)
next_q_value = tf.reduce_max(next_target,axis = 1)
target[range(batch_size),actions] = rewards + (1-dones)*garmma*next_q_value
with tf.GradientTape() as tape:
q_pred = self.model(states)
loss = tf.losses.mean_squared_error(target,q_pred)
grads = tape.gradient(loss,self.model.trainable_weights)
self.model_optim.apply_gradients(zip(grads,self.model.trainable_weights))
self.traget_update()
def update_epsilon(self):
self.epsilon *= 0.999
if self.epsilon <= 0.05:
self.epsilon = 0.05
def training(self):
for i in range(train_episodes):
total_reward = 0
Done = 0
state = self.env.reset()
while Done != 1:
action = self.epsilon_greedy(state)
#self.update_epsilon()
next_state,reward,Done,_ = self.env.step(action)
if Done:
reward = -20.
total_reward += reward
self.buffer.push(state,action,reward,next_state,Done)
state = next_state
if total_reward >= 2000:
break
if len(self.buffer.buffer) > batch_size:
self.replay()
print('Episode:%d, Reward:%f, Epsilon:%f'%(i,total_reward,self.epsilon))
for i in range(20):
state_t = self.env.reset()
Done_t = 0
total_reward_t = 0
while Done_t != 1:
self.env.render()
state_t = np.array(state_t).reshape([1,4])
action_t = np.argmax(self.model(state_t)[0])
next_state_t,reward_t,Done_t,_ = env.step(action_t)
state_t = next_state_t
total_reward_t += reward_t
print('TEST Reward:%f'%total_reward_t)
if __name__ == '__main__':
env = gym.make('CartPole-v1')
env = env.unwrapped
agent = Agent(env)
agent.training()
env.close()