-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmake_ground_truth.py
151 lines (120 loc) · 4.5 KB
/
make_ground_truth.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
from __future__ import print_function
import numpy as np
import tensorflow as tf
import argparse
import os
import sys
from PIL import Image
from skimage.io import imread, imshow
from utils.image_utils import read_image
import cv2
import matplotlib.pyplot as plt
import scipy.ndimage as ndi
# def get_image_size(data):
# image_path = os.path.join(FLAGS.dataset_dir, data, 'images')
# image = os.listdir(image_path)
# img = Image.open(os.path.join(image_path, image[0]))
#
# return img.height, img.width
def get_contour(img):
# '''
img_contour = np.zeros_like(img).astype(np.uint8)
# http://opencv-python.readthedocs.io/en/latest/doc/15.imageContours/imageContours.html
contours, hierarchy = cv2.findContours(img.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cv2.drawContours(img_contour, contours, -1, (255, 255, 255), 1)
return img_contour
# '''
'''
# https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.ndimage.morphology.binary_erosion.html
_img_contour = (img / 255.0).astype(np.uint8)
erosion = ndi.morphology.binary_erosion(_img_contour, border_value=1).astype(_img_contour.dtype)
img_contour = _img_contour - erosion
img_contour = (255.0 * img_contour).astype(np.uint8)
return img_contour
'''
def morpho_op(BW):
s = [[0,1,0],[1,1,1],[0,1,0]]#structuring element (diamond shaped)
m_morfo = ndi.binary_opening(BW,structure=s,iterations=1)
m_morfo = ndi.binary_closing(m_morfo,structure=s,iterations=1)
M_filled = ndi.binary_fill_holes(m_morfo,structure=s)
return M_filled
def main(_):
filelist = sorted(os.listdir(FLAGS.dataset_dir))
filecount = 1
for data in filelist:
image_path = os.path.join(FLAGS.dataset_dir, data, 'images', data + '.png')
img_shape = read_image(image_path).shape
mask_path = os.path.join(FLAGS.dataset_dir, data, 'masks')
mask_images = sorted(os.listdir(mask_path))
mask = np.zeros((img_shape[0], img_shape[1], 1), dtype=np.bool)
if FLAGS.use_contour:
contour = np.zeros((img_shape[0], img_shape[1], 1), dtype=np.bool)
for mask_file in mask_images:
_mask = imread(os.path.join(mask_path, mask_file))
#
# fill the holes that remained
_mask_f = morpho_op(_mask)
# Rescale to 0-255 and convert to uint8
_mask_f = (255.0 * _mask_f).astype(np.uint8)
_mask |= _mask_f
# imshow(np.squeeze(_mask2))
# plt.show()
#
_mask = np.expand_dims(_mask, axis=-1)
mask = np.maximum(mask, _mask)
#
if FLAGS.use_contour:
_contour = get_contour(_mask)
contour = np.maximum(contour, _contour)
# imshow(np.squeeze(_contour))
# plt.show()
gt_path = os.path.join(FLAGS.ground_truth_dir, data, FLAGS.ground_truth_folder)
if not os.path.exists(gt_path):
os.makedirs(gt_path)
print(">> (%d / %d) %s" % (filecount, filelist.__len__(), data))
filecount += 1
# imshow(np.squeeze(contour))
# plt.show()
contour_of_mask = get_contour(mask)
# imshow(np.squeeze(contour_of_mask))
# plt.show()
contour_final = contour - contour_of_mask
# imshow(np.squeeze(contour_final))
# plt.show()
#imshow(np.squeeze(mask))
#plt.show()
#mask2 = mask - contour
#imshow(np.squeeze(mask2))
#plt.show()
if FLAGS.use_contour:
mask = mask - contour_final
mask = np.squeeze(mask)
# imshow(mask)
# plt.show()
img = Image.fromarray(mask)
img.save(os.path.join(gt_path, data + '.png'))
# img.show(title=X)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset_dir',
default='../../dl_data/nucleus/stage1_train',
type=str,
help="Data directory")
parser.add_argument(
'--ground_truth_dir',
default='../../dl_data/nucleus/stage1_train',
type=str,
help="ground_truth data directory")
parser.add_argument(
'--ground_truth_folder',
default='gt_mask',
type=str,
help="ground_truth folder")
parser.add_argument(
'--use_contour',
default=True,
type=bool,
help="use contour")
FLAGS, unparsed = parser.parse_known_args()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)