-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathpruners.py
251 lines (188 loc) · 9.49 KB
/
pruners.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import torch.nn as nn
from models import Block
def prune_neurons(model, n: list[int] | float = 0.2) -> None:
# goal: trim the MLP layer weights
# 1 - argsort the importances of the `ffwd` layers defined in the model
# 2 - remove the weights with respect to the given ratio
constraints = None
c = 0
for module in model.modules():
if isinstance(module, Block):
importances = module.ffwd.net[0].calculated_importance
if constraints is None:
constraints = pruning_n_handler(n, importances.size(0), model.n_blocks)
num_neurons = constraints[c] # type: ignore
c += 1
idx = importances.argsort(descending=True)[:num_neurons]
# reinitialize the weights along with the layer
dense1 = module.ffwd.net[0]
dense2 = module.ffwd.net[2]
module.ffwd.net[0] = nn.Linear(dense1.in_features, num_neurons).to(
model.device
) # weights.shape = (num_neurons, dense1.in_features)
module.ffwd.net[2] = nn.Linear(num_neurons, dense2.out_features).to(
model.device
) # weights.shape = (dense2.out_features = emb)
# now we need to set the weights to the new layers.
module.ffwd.net[0].weight.data = dense1.weight.data[idx, :]
module.ffwd.net[0].bias.data = dense1.bias.data[idx]
module.ffwd.net[2].weight.data = dense2.weight.data[:, idx]
module.ffwd.net[2].bias.data = dense2.bias.data
module.ffwd.net[0].calculated_importance = importances[idx]
module.ffwd.net[2].calculated_importance = importances[idx]
return model
def prune_heads(model, n: list[int] | float) -> None:
# goal: trim the attention heads' layer weights using the same approach as the `prune_neurons`
constraints = None
c = 0
for module in model.modules():
if isinstance(module, Block):
# now the multi-head attention
for head in module.sa.heads:
# key,value,query weight shape: (head_size, n_embd) # n_embd
k, v, q = head.key, head.value, head.query
key_importances = head.key.calculated_importance
value_importances = head.value.calculated_importance
query_importances = head.query.calculated_importance
if constraints is None:
constraints = pruning_n_handler(
n, key_importances.size(0), model.n_blocks
)
num_neurons = constraints[c] # type: ignore
k_idx = key_importances.argsort(descending=True)[:num_neurons]
v_idx = value_importances.argsort(descending=True)[:num_neurons]
q_idx = query_importances.argsort(descending=True)[:num_neurons]
head.key = nn.Linear(k.in_features, num_neurons, bias=False).to(
model.device
)
head.value = nn.Linear(v.in_features, num_neurons, bias=False).to(
model.device
)
head.query = nn.Linear(q.in_features, num_neurons, bias=False).to(
model.device
)
head.key.weight.data = k.weight.data[
k_idx, :
] # (head_size, num_dense_embd)
head.value.weight.data = v.weight.data[
v_idx, :
] # (head_size, num_dense_embd)
head.query.weight.data = q.weight.data[
q_idx, :
] # (head_size, num_dense_embd)
head.key.calculated_importance = key_importances[k_idx]
head.value.calculated_importance = value_importances[v_idx]
head.query.calculated_importance = query_importances[q_idx]
# TODO: only the weights in the embedding layers are prunned (1st strategy)
# TODO: need to follow the correct implementation from the paper (pruning every linear layer?)
proj = module.sa.proj
proj_importances = module.sa.proj.calculated_importance
num_neurons = constraints[c] * model.n_head # type: ignore
idx = proj_importances.argsort(descending=True)[:num_neurons]
module.sa.proj = nn.Linear(num_neurons, proj.out_features).to(model.device)
module.sa.proj.weight.data = proj.weight.data[:, idx]
module.sa.proj.bias.data = proj.bias.data
module.sa.proj.calculated_importance = proj_importances[idx]
c += 1
def prune_embeddings(model, ratio=0.2) -> None:
# goal: trim the embedding dimension of the weight matrices in MLP, MHA, and LayerNorm layers.
importances = model.blocks[0].ln1.calculated_importance
num_dense_embd = int((1 - ratio) * model.n_embd)
idx = importances.argsort(descending=True)[:num_dense_embd]
for module in model.modules():
if isinstance(module, Block):
# start with pruning the MLP layers
importances = module.ln1.calculated_importance
dense1 = module.ffwd.net[0] # weights.shape = (emb, 4 * emb)
dense2 = module.ffwd.net[2] # weights.shape = (4 * emb, emb)
module.ffwd.net[0] = nn.Linear(num_dense_embd, dense1.out_features).to(
model.device
) # weights.shape = (num_dense_embd, dense1.in_features)
module.ffwd.net[2] = nn.Linear(dense2.in_features, num_dense_embd).to(
model.device
) # weights.shape = (dense2.out_features = emb)
module.ffwd.net[0].weight.data = dense1.weight.data[:, idx]
module.ffwd.net[0].bias.data = dense1.bias.data
module.ffwd.net[2].weight.data = dense2.weight.data[idx, :]
module.ffwd.net[2].bias.data = dense2.bias.data[idx]
# now the multi-head attention
for head in module.sa.heads:
# key,value,query weight shape: (head_size, n_embd) # n_embd
k, v, q = head.key, head.value, head.query
head.key = nn.Linear(num_dense_embd, k.out_features, bias=False).to(
model.device
)
head.value = nn.Linear(num_dense_embd, v.out_features, bias=False).to(
model.device
)
head.query = nn.Linear(num_dense_embd, q.out_features, bias=False).to(
model.device
)
head.key.weight.data = k.weight.data[
:, idx
] # (head_size, num_dense_embd)
head.value.weight.data = v.weight.data[
:, idx
] # (head_size, num_dense_embd)
head.query.weight.data = q.weight.data[
:, idx
] # (head_size, num_dense_embd)
head.key.calculated_importance = k.calculated_importance
head.value.calculated_importance = v.calculated_importance
head.query.calculated_importance = q.calculated_importance
ln1 = module.ln1
ln2 = module.ln2
module.ln1 = nn.LayerNorm(num_dense_embd).to(model.device)
module.ln1.weight.data = ln1.weight.data[idx]
module.ln1.bias.data = ln1.bias.data[idx]
module.ln2 = nn.LayerNorm(num_dense_embd).to(model.device)
module.ln2.weight.data = ln2.weight.data[idx]
module.ln2.bias.data = ln2.bias.data[idx]
proj = module.sa.proj
module.sa.proj = nn.Linear(proj.in_features, num_dense_embd).to(
model.device
)
module.sa.proj.weight.data = proj.weight.data[
idx, :
] # (num_dense_embd, n_embd)
module.sa.proj.bias.data = proj.bias.data[idx]
module.sa.proj.calculated_importance = proj.calculated_importance
temb_table = model.token_embedding_table
pemb_table = model.position_embedding_table
model.token_embedding_table = nn.Embedding(model.vocab_size, num_dense_embd).to(
model.device
) # type: ignore
model.position_embedding_table = nn.Embedding(model.block_size, num_dense_embd).to(
model.device
)
model.token_embedding_table.weight.data = temb_table.weight.data[:, idx]
model.position_embedding_table.weight.data = pemb_table.weight.data[:, idx]
lnf = model.ln_f
ln_head = model.ln_head
model.ln_f = nn.LayerNorm(num_dense_embd).to(model.device)
model.ln_head = nn.Linear(num_dense_embd, ln_head.out_features).to(model.device)
model.ln_f.weight.data = lnf.weight.data[idx]
model.ln_f.bias.data = lnf.bias.data[idx]
model.ln_head.weight.data = ln_head.weight.data[
:, idx
] # weight.shape = (vocab_size, embd)
model.ln_head.bias.data = ln_head.bias.data
def pruning_n_handler(n, size, iters: int = 1):
if isinstance(n, int):
assert (
n < size
), "`n` can't be higher than the calculated number of activation importances!"
return [n] * iters
elif isinstance(n, float) and 0 <= n < 1: # if n is a ratio
num = int((1 - n) * size)
return [num] * iters
elif isinstance(n, list):
assert (
len(n) == iters
), "the number of layers being pruned should be same with `iters`!"
return n
AVAILABLE_PRUNING_STRATEGIES = {
"width_head": prune_heads,
"width_neuron": prune_neurons,
"width_embedding": prune_embeddings,
}