-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathperfs.py
392 lines (336 loc) · 15.9 KB
/
perfs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
from typing import Optional, Tuple
import torch
import torch.nn as nn
import triton
import triton.language as tl
from transformers.models.llama.modeling_llama import (LlamaAttention,
apply_rotary_pos_emb,
repeat_kv)
from transformers.utils import logging
logger = logging.get_logger(__name__)
@triton.jit
def abc_fwd_kernel(
q, k, v, o, sk, sv,
stride_qb, stride_qh, stride_qt, stride_qd,
stride_skb, stride_skh, stride_skt, stride_skd,
B, H, T, D, M, scale,
BD: tl.constexpr,
BM: tl.constexpr
):
i_bh = tl.program_id(0)
p_q = tl.make_block_ptr(base=q + i_bh * stride_qh,
shape=(T * D,),
strides=(stride_qd,),
offsets=(0,),
block_shape=(BD,),
order=(0,))
p_k = tl.make_block_ptr(base=k + i_bh * stride_qh,
shape=(T * D,),
strides=(stride_qd,),
offsets=(0,),
block_shape=(BD,),
order=(0,))
p_v = tl.make_block_ptr(base=v + i_bh * stride_qh,
shape=(T * D,),
strides=(stride_qd,),
offsets=(0,),
block_shape=(BD,),
order=(0,))
p_o = tl.make_block_ptr(base=o + i_bh * stride_qh,
shape=(T * D,),
strides=(stride_qd,),
offsets=(0,),
block_shape=(BD,),
order=(0,))
p_sk = tl.make_block_ptr(base=sk + i_bh * stride_skh,
shape=(T * M,),
strides=(stride_skd,),
offsets=(0,),
block_shape=(BM,),
order=(0,))
p_sv = tl.make_block_ptr(base=sv + i_bh * stride_skh,
shape=(T * M,),
strides=(stride_skd,),
offsets=(0,),
block_shape=(BM,),
order=(0,))
m_sk, m_sv = tl.full([BM,], float('-inf'), dtype=tl.float32), tl.full([BM,], float('-inf'), dtype=tl.float32)
a_sk, a_sv = tl.zeros([BM,], dtype=tl.float32), tl.zeros([BM,], dtype=tl.float32)
a_k = tl.zeros([BM, BD], dtype=tl.float32)
a_v = tl.zeros([BM, BD], dtype=tl.float32)
for _ in range(T):
# [BM,]
b_sk = tl.load(p_sk)
m_ski = tl.maximum(m_sk, b_sk)
b_sk = tl.exp(b_sk - m_ski)
a_sk = a_sk * tl.exp(m_sk - m_ski)
a_ski = b_sk + a_sk
# [BM, BD]
a_k = a_k * (a_sk / a_ski)[:, None] + (b_sk / a_ski)[:, None] * tl.load(p_k)[None, :]
# [BM,]
b_sv = tl.load(p_sv)
m_svi = tl.maximum(m_sv, b_sv)
b_sv = tl.exp(b_sv - m_svi)
a_sv = a_sv * tl.exp(m_sv - m_svi)
a_svi = b_sv + a_sv
# [BM, BD]
a_v = a_v * (a_sv / a_svi)[:, None] + (b_sv / a_svi)[:, None] * tl.load(p_v)[None, :]
# [BD,]
b_q = tl.load(p_q) * scale
# [BD,]
b_o = tl.sum(tl.softmax(tl.sum(b_q[None, :] * a_k, 1), 0)[:, None] * a_v, 0)
tl.store(p_o, b_o.to(p_q.dtype.element_ty))
m_sk, m_sv = m_ski, m_svi
a_sk, a_sv = a_ski, a_svi
p_q = tl.advance(p_q, (BD,))
p_k = tl.advance(p_k, (BD,))
p_v = tl.advance(p_v, (BD,))
p_o = tl.advance(p_o, (BD,))
p_sk = tl.advance(p_sk, (BM,))
p_sv = tl.advance(p_sv, (BM,))
class ABCAttention(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, sk, sv):
BD, BM = q.shape[-1], sk.shape[-1]
batch_size, n_heads, seq_len, d_head = q.shape
num_stages = 3 if d_head <= 64 else 2
num_warps = 4
grid = (batch_size * n_heads,)
scale = d_head ** -0.5
assert d_head in {16, 32, 64, 128}
o = torch.empty_like(q)
abc_fwd_kernel[grid](
q, k, v, o, sk, sv,
q.stride(0), q.stride(1), q.stride(2), q.stride(3),
sk.stride(0), sk.stride(1), sk.stride(2), sk.stride(3),
batch_size, n_heads, seq_len, d_head, sk.shape[-1], scale,
BD=BD, BM=BM,
num_warps=num_warps,
num_stages=num_stages
)
ctx.save_for_backward(q, k, v, sk, sv, o)
ctx.grid = grid
ctx.scale = scale
return o
@staticmethod
def backward(ctx, do):
def reversed_cumsum(x, dim=-1):
c = x.cumsum(dim)
return x + c.index_select(dim, x.new_tensor([c.shape[dim]-1], dtype=torch.long)) - c
q, k, v, ek, ev, ak, av, p, o = ctx.saved_tensors
scale = ctx.scale
K = (ek.unsqueeze(-1) * k.unsqueeze(-2)).cumsum(2) / ak.unsqueeze(-1)
V = (ev.unsqueeze(-1) * v.unsqueeze(-2)).cumsum(2) / av.unsqueeze(-1)
dq, dk, dv, dsk, dsv = None, None, None, None, None
dp = (p * (torch.einsum('...qd,...qmd->...qm', do, V) - (do * o).sum(-1, True))) * scale
dq = torch.einsum('...qm,...qmd->...qd', dp, K)
dK = torch.einsum('...qm,...qd->...qmd', dp / ak, q)
dK1 = reversed_cumsum(dK, 2)
dk = torch.einsum('...qm,...qmd->...qd', ek, dK1)
dsk = ek * (torch.einsum('...qd,...qmd->...qm', k, dK1) - reversed_cumsum((dK * K).sum(-1), 2))
dV = torch.einsum('...qd,...qm->...qmd', do, p / av)
dV1 = reversed_cumsum(dV, 2)
dv = torch.einsum('...qm,...qmd->...qd', ev, dV1)
dsv = ev * (torch.einsum('...qd,...qmd->...qm', v, dV1) - reversed_cumsum((dV * V).sum(-1), 2))
return dq, dk, dv, dsk, dsv
def naive_attention(q, k, v, sk, sv):
dtype = q.dtype
*_, d_head = q.shape
# [batch_size, n_heads, seq_len, 64]
ek = (sk - sk.max(2, True)[0]).exp()
ev = (sv - sv.max(2, True)[0]).exp()
ak, av = ek.cumsum(2), ev.cumsum(2)
# [batch_size, n_heads, seq_len, 64, d_head]
K = (ek.unsqueeze(-1) * k.unsqueeze(-2)).cumsum(2) / ak.unsqueeze(-1)
V = (ev.unsqueeze(-1) * v.unsqueeze(-2)).cumsum(2) / av.unsqueeze(-1)
# [batch_size, n_heads, seq_len, 64]
p = torch.einsum('...d,...md->...m', q * d_head ** -0.5, K).softmax(-1, dtype=torch.float).to(dtype)
# [batch_size, n_heads, seq_len, d_head]
o = torch.einsum('...m,...md->...d', p, V)
return o
class NaiveAttention1(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k, v, sk, sv):
*_, d_head = q.shape
dtype, scale = q.dtype, d_head ** -0.5
# [batch_size, n_heads, seq_len, 64]
ek = (sk - sk.max(2, True)[0]).to(torch.float).exp()
ev = (sv - sv.max(2, True)[0]).to(torch.float).exp()
ak, av = ek.cumsum(2), ev.cumsum(2)
# [batch_size, n_heads, seq_len, 64, d_head]
K = (ek.unsqueeze(-1) * k.unsqueeze(-2)).cumsum(2) / ak.unsqueeze(-1)
V = ((ev.unsqueeze(-1) * v.unsqueeze(-2)).cumsum(2) / av.unsqueeze(-1)).to(dtype)
# [batch_size, n_heads, seq_len, 64]
p = torch.einsum('...d,...md->...m', q.to(torch.float) * scale, K).softmax(-1).to(dtype)
# [batch_size, n_heads, seq_len, d_head]
o = torch.einsum('...m,...md->...d', p, V)
ctx.save_for_backward(q, k, v, ek, ev, ak, av, p, o)
ctx.dtype, ctx.scale = dtype, scale
return o
@staticmethod
def backward(ctx, do):
def reversed_cumsum(x, dim=-1):
c = x.cumsum(dim)
return x + c.index_select(dim, x.new_tensor([c.shape[dim]-1], dtype=torch.long)) - c
q, k, v, ek, ev, ak, av, p, o = ctx.saved_tensors
dtype, scale = ctx.dtype, ctx.scale
K = ((ek.unsqueeze(-1) * k.unsqueeze(-2)).cumsum(2) / ak.unsqueeze(-1)).to(dtype)
V = ((ev.unsqueeze(-1) * v.unsqueeze(-2)).cumsum(2) / av.unsqueeze(-1)).to(dtype)
dq, dk, dv, dsk, dsv = None, None, None, None, None
dp = (p * (torch.einsum('...qd,...qmd->...qm', do, V) - (do * o).sum(-1, True))) * scale
dq = torch.einsum('...qm,...qmd->...qd', dp, K)
dK = torch.einsum('...qm,...qd->...qmd', (dp / ak).to(dtype), q)
dK1 = reversed_cumsum(dK, 2)
dk = torch.einsum('...qm,...qmd->...qd', ek.to(dtype), dK1)
dsk = ek * (torch.einsum('...qd,...qmd->...qm', k, dK1) - reversed_cumsum((dK * K).sum(-1), 2))
dV = torch.einsum('...qd,...qm->...qmd', do, (p / av).to(dtype))
dV1 = reversed_cumsum(dV, 2)
dv = torch.einsum('...qm,...qmd->...qd', ev.to(dtype), dV1)
dsv = ev * (torch.einsum('...qd,...qmd->...qm', v, dV1) - reversed_cumsum((dV * V).sum(-1), 2))
return dq, dk, dv, dsk, dsv
naive_attention1 = NaiveAttention1.apply
abc_attention = ABCAttention.apply
class LLaMAABCAttention(LlamaAttention):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.w_k = nn.Linear(self.hidden_size, 64, bias=False)
self.w_v = nn.Linear(self.hidden_size, 64, bias=False)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
**kwargs
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
# LlamaFlashAttention2 attention does not support output_attentions
output_attentions = False
batch_size, seq_len, _ = hidden_states.shape
# [batch_size, seq_len, n_heads * d_head]
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
q = q.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
k = k.view(batch_size, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
v = v.view(batch_size, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = k.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
cos, sin = self.rotary_emb(v, seq_len=kv_seq_len)
q, k = apply_rotary_pos_emb(q, k, cos, sin, position_ids)
if past_key_value is not None: # reuse k, v, self_attention
k = torch.cat([past_key_value[0], k], dim=2)
v = torch.cat([past_key_value[1], v], dim=2)
past_key_value = (k, v) if use_cache else None
# cast to half precision
input_dtype = q.dtype
if input_dtype == torch.float32:
logger.warning_once("The input hidden states seems to be silently casted in float32.")
q = q.to(self.config.torch_dtype)
k = k.to(self.config.torch_dtype)
v = v.to(self.config.torch_dtype)
if getattr(self, "num_key_value_groups", None):
k = repeat_kv(k, self.num_key_value_groups)
v = repeat_kv(v, self.num_key_value_groups)
# [batch_size, n_heads, seq_len, 64]
sk = self.w_k(hidden_states).view(batch_size, 1, seq_len, -1).repeat(1, self.num_heads, 1, 1)
sv = self.w_v(hidden_states).view(batch_size, 1, seq_len, -1).repeat(1, self.num_heads, 1, 1)
o = naive_attention(q, k, v, sk, sv)
o = o.transpose(1, 2).reshape(batch_size, seq_len, self.hidden_size)
o = self.o_proj(o)
if not output_attentions:
p = None
return o, p, past_key_value
if __name__ == '__main__':
B, H, T, D, M = 2, 8, 128, 32, 16
dtype = torch.bfloat16
torch.manual_seed(42)
# [batch_size, n_heads, seq_len, d_head]
q = torch.randn((B, H, T, D), dtype=dtype, device='cuda').requires_grad_()
k = torch.randn((B, H, T, D), dtype=dtype, device='cuda').requires_grad_()
v = torch.randn((B, H, T, D), dtype=dtype, device='cuda').requires_grad_()
# [batch_size, n_heads, seq_len, 64]
sk = torch.randn((B, H, T, M), dtype=dtype, device='cuda').requires_grad_()
sv = torch.randn((B, H, T, M), dtype=dtype, device='cuda').requires_grad_()
do = torch.randn_like(q)
ref = naive_attention(q, k, v, sk, sv)
ref.backward(do)
ref_dq, q.grad = q.grad.clone(), None
ref_dk, k.grad = k.grad.clone(), None
ref_dv, v.grad = v.grad.clone(), None
ref_dsk, sk.grad = sk.grad.clone(), None
ref_dsv, sv.grad = sv.grad.clone(), None
ref1 = naive_attention1(q, k, v, sk, sv)
ref1.backward(do)
ref1_dq, q.grad = q.grad.clone(), None
ref1_dk, k.grad = k.grad.clone(), None
ref1_dv, v.grad = v.grad.clone(), None
ref1_dsk, sk.grad = sk.grad.clone(), None
ref1_dsv, sv.grad = sv.grad.clone(), None
#assert ref.allclose(ref1, 0, 1e-2)
#import pdb
#pdb.set_trace()
#assert ref_dq.allclose(ref1_dq, 0, 1e-2)
#assert ref_dk.allclose(ref1_dk, 0, 1e-2)
#assert ref_dv.allclose(ref1_dv, 0, 1e-2)
#assert ref_dsk.allclose(ref1_dsk, 0, 1e-2)
#assert ref_dsv.allclose(ref1_dsv, 0, 1e-2)
# triton implementation
tri = abc_attention(q, k, v, sk, sv)
# tri.backward(do)
# tri_dv, v.grad = v.grad.clone(), None
# tri_dk, k.grad = k.grad.clone(), None
# tri_dq, q.grad = q.grad.clone(), None
# assert ref.allclose(tri, 0, 1e-2)
# assert torch.allclose(ref_dv, tri_dv, 0, 1e-2)
# assert torch.allclose(ref_dk, tri_dk, 0, 1e-2)
print('Done!')
@triton.testing.perf_report(
triton.testing.Benchmark(
# argument names to use as an x-axis for the plot
x_names=['seq_len'],
# different possible values for `x_name`
x_vals=[128 * 2 ** i for i in range(0, 10)],
# argument name whose value corresponds to a different line in the plot
line_arg='provider',
# possible values for `line_arg``
line_vals=['torch', 'triton', 'torch_bwd', 'triton_bwd'],
# label name for the lines
line_names=['torch', 'triton', 'torch_bwd', 'triton_bwd'],
# line styles
styles=[('green', '-'), ('blue', '--'), ('red', '-.'), ('cyan', ':')],
ylabel="Execution Time (ms)", # label name for the y-axis
# name for the plot. Used also as a file name for saving the plot.
plot_name="Performance",
args={},
)
)
def benchmark(seq_len, provider):
device = 'cuda'
requires_grad = 'bwd' in provider
batch_size, n_heads, d_head, n_mem = 2, 8, 64, 64
q = torch.randn(batch_size, n_heads, seq_len, d_head, device=device, requires_grad=requires_grad)
k = torch.randn(batch_size, n_heads, seq_len, d_head, device=device, requires_grad=requires_grad)
v = torch.randn(batch_size, n_heads, seq_len, d_head, device=device, requires_grad=requires_grad)
sk = torch.randn(batch_size, n_heads, seq_len, n_mem, device=device, requires_grad=requires_grad)
sv = torch.randn(batch_size, n_heads, seq_len, n_mem, device=device, requires_grad=requires_grad)
do = torch.ones_like(q)
quantiles = [0.5, 0.2, 0.8]
if provider == 'torch':
if seq_len > 40000:
return 0, 0, 0
results = triton.testing.do_bench(lambda: naive_attention(q, k, v, sk, sv), quantiles=quantiles)
elif provider == 'triton':
results = triton.testing.do_bench(lambda: abc_attention(q, k, v, sk, sv), quantiles=quantiles)
elif provider == 'torch_bwd':
if seq_len > 20000:
return 0, 0, 0
results = triton.testing.do_bench(lambda: naive_attention(q, k, v, sk, sv).backward(do), quantiles=quantiles)
elif provider == 'triton_bwd':
if seq_len > 20000:
return 0, 0, 0
results = triton.testing.do_bench(lambda: naive_attention1(q, k, v, sk, sv).backward(do), quantiles=quantiles)
return results
benchmark.run(show_plots=True, print_data=True, save_path='.')