-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathsetup.cfg
74 lines (68 loc) · 1.92 KB
/
setup.cfg
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# Configuration of the Python project
# Configure setup.py
[metadata]
name = spiga
version = 0.0.6
author = Andres Prados Torreblanca
author_email = andresprator@gmail.com
description = SPIGA: Shape Preserving Facial Landmarks with Graph Attention Networks
long_description = file: README.md
long_description_content_type= text/markdown
license = BSD-3-Clause
license_files = LICENSE
url = https://github.com/andresprados/SPIGA
project_urls =
Homepage = https://bmvc2022.mpi-inf.mpg.de/155/
SPIGA Paper = https://bmvc2022.mpi-inf.mpg.de/0155.pdf
Bug Tracker = https://github.com/andresprados/SPIGA/issues
keywords =
Computer Vision
Face Alignment
Head Pose Estimation
Pytorch
CNN
GNN
BMVC2022
WFLW
300W
Merlrav
COFW
classifiers =
Development Status :: 4 - Beta
Intended Audience :: Developers
Intended Audience :: Science/Research
Intended Audience :: Education
Operating System :: OS Independent
Environment :: GPU
Environment :: Console
Programming Language :: Python :: 3
Programming Language :: Python :: 3.7
Programming Language :: Python :: 3.8
Programming Language :: Python :: 3.9
Programming Language :: Python :: 3.10
Topic :: Scientific/Engineering :: Artificial Intelligence
Topic :: Scientific/Engineering :: Image Processing
Topic :: Software Development :: Libraries
Topic :: Software Development :: Libraries :: Python Modules
[options]
packages = find:
include_package_data = True
python_requires = >= 3.6
install_requires =
matplotlib>=3.2.1
numpy>=1.18.2
opencv-python>=4.2.0.32
Pillow>=7.0.0
torch>=1.4.0
torchvision>=0.5.0
torchaudio
scipy
scikit-learn
[options.extras_require]
demo =
retinaface-py>=0.0.2
sort-tracker-py>= 1.0.2
[options.packages.find]
exclude =
spiga.eval.results*
colab_tutorials*