-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnipype_generate_fieldmaps.py
369 lines (300 loc) · 11.5 KB
/
nipype_generate_fieldmaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
from __future__ import annotations
import argparse
import json
import math
from itertools import chain
from pathlib import Path
from typing import Any
import nibabel as nib
from nipype import Function
from nipype import IdentityInterface
from nipype import Merge
from nipype import Node
from nipype import Workflow
from nipype.interfaces import fsl
__version__ = "0.2.4"
INPUT_FIELDS = [
"se_epi_pe1_file",
"se_epi_pe2_file",
"se_epi_pe1_sidecar_file",
"se_epi_pe2_sidecar_file",
]
OUTPUT_FIELDS = [
"acq_params_file",
"echo_spacing",
"pe1_pedir",
"pe2_pedir",
"corrected_se_epi_file",
"fmap_hz_file",
"fmap_rads_file",
"fmap_mag_file",
"fmap_mag_brain_file",
"fmap_mag_brain_mask_file",
]
PE_UVECTORS: dict[str, tuple[int, int, int]] = { # unit vectors
"i": (1, 0, 0),
"j": (0, 1, 0),
"k": (0, 0, 1),
"i-": (-1, 0, 0),
"j-": (0, -1, 0),
"k-": (0, 0, -1),
}
PE_XYZ = {"i": "x", "j": "y", "k": "z", "i-": "-x", "j-": "-y", "k-": "-z"}
def create_generate_fieldmaps_wf(name: str = "generate_fieldmaps_wf") -> Workflow:
wf = Workflow(name=name)
wf.config["execution"]["remove_unnecessary_outputs"] = "false"
inputnode = Node(IdentityInterface(fields=INPUT_FIELDS), name="inputnode")
# extract the effective echo_spacing
effective_echo_spacing = Node(
Function(
input_names=["sidecar_file"],
output_names=["echo_spacing"],
function=_extract_effective_echo_spacing_fi,
),
name="effective_echo_spacing",
)
wf.connect(
inputnode,
"se_epi_pe1_sidecar_file",
effective_echo_spacing,
"sidecar_file",
)
# extract the epi_reg-compatible phase-encoding directions
pe1_pedir = Node(
Function(
input_names=["sidecar_file"],
output_names=["pedir"],
function=_extract_pedir_fi,
),
name="pe1_pedir",
)
wf.connect(inputnode, "se_epi_pe1_sidecar_file", pe1_pedir, "sidecar_file")
pe2_pedir = Node(
Function(
input_names=["sidecar_file"],
output_names=["pedir"],
function=_extract_pedir_fi,
),
name="pe2_pedir",
)
wf.connect(inputnode, "se_epi_pe2_sidecar_file", pe2_pedir, "sidecar_file")
# pre-concatenation (need images in a list)
listify_se_epi_files = Node(Merge(numinputs=2), name="listify_se_epi_files")
wf.connect(inputnode, "se_epi_pe1_file", listify_se_epi_files, "in1")
wf.connect(inputnode, "se_epi_pe2_file", listify_se_epi_files, "in2")
# merge the acquisitions (volumes) into a single nii image
merge_se_epi_files = Node(
fsl.Merge(dimension="t", merged_file="merged.nii.gz"),
name="merge_se_epi_files",
)
wf.connect(listify_se_epi_files, "out", merge_se_epi_files, "in_files")
# create the acquisition parameter file (--datain)
acq_params = Node(
Function(
input_names=[
"merged_se_epi_file",
"pe1_sidecar_file",
"pe2_sidecar_file",
"out_file",
],
output_names=["out_file"],
function=_create_acq_param_file_fi,
),
name="acq_params",
)
wf.connect(merge_se_epi_files, "merged_file", acq_params, "merged_se_epi_file")
wf.connect(inputnode, "se_epi_pe1_sidecar_file", acq_params, "pe1_sidecar_file")
wf.connect(inputnode, "se_epi_pe2_sidecar_file", acq_params, "pe2_sidecar_file")
# estimate the fieldmaps via FSL's TOPUP
topup = Node(
fsl.TOPUP(out_field="fmap_hz.nii.gz", out_corrected="corrected.nii.gz"),
name="topup",
)
wf.connect(merge_se_epi_files, "merged_file", topup, "in_file")
wf.connect(acq_params, "out_file", topup, "encoding_file")
# convert the estimated field to rad/s
two_pi = 2 * math.pi
fmap_rads = Node(
fsl.ImageMaths(op_string=f"-mul {two_pi}", out_file="fmap_rads.nii.gz"),
name="fmap_rads",
)
wf.connect(topup, "out_field", fmap_rads, "in_file")
# compute a magnitude image from the corrected Spin Echo EPI volumes
fmap_mag = Node(
fsl.ImageMaths(op_string="-Tmean", out_file="fmap_mag.nii.gz"),
name="fmap_mag",
)
wf.connect(topup, "out_corrected", fmap_mag, "in_file")
# extract the mean brain + mask from the magnitude image
fmap_mag_brain = Node(
fsl.BET(frac=0.5, out_file="fmap_mag_brain.nii.gz", mask=True),
name="fmap_mag_brain",
)
wf.connect(fmap_mag, "out_file", fmap_mag_brain, "in_file")
# To the outside world!
outputnode = Node(IdentityInterface(fields=OUTPUT_FIELDS), name="outputnode")
wf.connect(acq_params, "out_file", outputnode, "acq_params_file")
wf.connect(effective_echo_spacing, "echo_spacing", outputnode, "echo_spacing")
wf.connect(pe1_pedir, "pedir", outputnode, "pe1_pedir")
wf.connect(pe2_pedir, "pedir", outputnode, "pe2_pedir")
wf.connect(topup, "out_corrected", outputnode, "corrected_se_epi_file")
wf.connect(topup, "out_field", outputnode, "fmap_hz_file")
wf.connect(fmap_rads, "out_file", outputnode, "fmap_rads_file")
wf.connect(fmap_mag, "out_file", outputnode, "fmap_mag_file")
wf.connect(fmap_mag_brain, "out_file", outputnode, "fmap_mag_brain_file")
wf.connect(fmap_mag_brain, "mask_file", outputnode, "fmap_mag_brain_mask_file")
return wf
# INTERFACES (fi = [F]unction [I]nterface)
def _extract_effective_echo_spacing_fi(sidecar_file):
import json
from pathlib import Path
from nipype_generate_fieldmaps import get_effective_echo_spacing
sidecar = json.loads(Path(sidecar_file).read_text())
return get_effective_echo_spacing(sidecar)
def _extract_pedir_fi(sidecar_file):
import json
from pathlib import Path
from nipype_generate_fieldmaps import get_phase_encoding_xyz
sidecar = json.loads(Path(sidecar_file).read_text())
return get_phase_encoding_xyz(sidecar)
def _create_acq_param_file_fi(
merged_se_epi_file,
pe1_sidecar_file,
pe2_sidecar_file,
out_file=None,
):
from nipype_generate_fieldmaps import create_acq_param_file
return create_acq_param_file(
merged_se_epi_file,
pe1_sidecar_file,
pe2_sidecar_file,
out_file,
)
# UTILITIES
def create_acq_param_file(
merged_se_epi_file: str | Path,
pe1_sidecar_file: str | Path,
pe2_sidecar_file: str | Path,
out_file: str | Path | None = None,
) -> Path:
# load JSON sidecars
pe1_sidecar = json.loads(Path(pe1_sidecar_file).read_text())
pe2_sidecar = json.loads(Path(pe2_sidecar_file).read_text())
# total readout times
trt_pe1 = get_total_readout_time(pe1_sidecar)
trt_pe2 = get_total_readout_time(pe2_sidecar)
# phase encoding unit vectors
pe1_vec = get_phase_encoding_vec(pe1_sidecar)
pe2_vec = get_phase_encoding_vec(pe2_sidecar)
# extract the number of volumes in the merged fieldmaps nii image
img: nib.Nifti1Image = nib.load(str(merged_se_epi_file))
n_total_vols: int = img.header["dim"][4] # type: ignore
# format the lines that we'll write to the acq param file
line_pe1 = " ".join(map(str, chain(pe1_vec, [trt_pe1])))
lines_pe1 = [line_pe1] * (n_total_vols // 2)
line_pe2 = " ".join(map(str, chain(pe2_vec, [trt_pe2])))
lines_pe2 = [line_pe2] * (n_total_vols // 2)
# create the acq param file
content = "\n".join(chain(lines_pe1, lines_pe2)) + "\n"
acq_param_file = Path(out_file) if out_file else Path.cwd() / "acq_params.txt"
acq_param_file.write_text(content)
return acq_param_file
def get_total_readout_time(sidecar: dict[str, Any]) -> float:
# extract or derive the total readout time, see:
# - https://bids-specification.readthedocs.io/en/v1.6.0/04-modality-specific-files/01-magnetic-resonance-imaging-data.html#in-plane-spatial-encoding # noqa: E501
# - https://lcni.uoregon.edu/kb-articles/kb-0003
if "TotalReadoutTime" in sidecar:
# can we extract it?
total_readout_time: float = sidecar["TotalReadoutTime"]
elif "ReconMatrixPE" in sidecar:
# can we compute it?
recon_matrix_pe: float = sidecar["ReconMatrixPE"]
effective_echo_spacing = get_effective_echo_spacing(sidecar)
total_readout_time = (recon_matrix_pe - 1) * effective_echo_spacing
else:
msg = "Could not extract or derive Total Readout Time from fieldmap sidecar"
raise ValueError(msg)
return total_readout_time
def get_effective_echo_spacing(sidecar: dict[str, Any]) -> float:
if "EffectiveEcho_Spacing" in sidecar:
# can we extract it?
effective_echo_spacing: float = sidecar["EffectiveEcho_Spacing"]
elif "BandwidthPerPixelPhaseEncode" in sidecar and "ReconMatrixPE" in sidecar:
# can we compute it?
bpppe: float = sidecar["BandwidthPerPixelPhaseEncode"]
recon_matrix_pe: float = sidecar["ReconMatrixPE"]
effective_echo_spacing = 1 / (bpppe * recon_matrix_pe)
else:
msg = "Could not extract or derive Effective Echo Spacing from fieldmap sidecar"
raise ValueError(msg)
return effective_echo_spacing
def get_phase_encoding_vec(sidecar: dict[str, Any]) -> tuple[int, int, int]:
pe: str = sidecar["PhaseEncodingDirection"]
return PE_UVECTORS[pe]
def get_phase_encoding_xyz(sidecar: dict[str, Any]) -> str:
pe: str = sidecar["PhaseEncodingDirection"]
return PE_XYZ[pe]
def cli() -> int:
parser = create_parser()
args = parser.parse_args()
if hasattr(args, "handler"):
return args.handler(args)
parser.print_help()
return 1
def create_parser(
parser: argparse.ArgumentParser | None = None,
) -> argparse.ArgumentParser:
description = (
"Generate fieldmaps from EPI acquisitions with differing "
"phase-encoding directions"
)
_parser = parser or argparse.ArgumentParser(description=description)
_parser.add_argument("-v", "--version", action="version", version=__version__)
_parser.add_argument(
"se_epi_pe1",
type=Path,
help="The spin-echo EPI file acquired in the 'first' phase-encoding direction",
)
_parser.add_argument(
"se_epi_pe2",
type=Path,
help="The spin-echo EPI file acquired in the 'second' phase-encoding direction",
)
_parser.add_argument(
"se_epi_pe1_sidecar",
type=Path,
help="The JSON sidecar for the first spin-echo EPI file",
)
_parser.add_argument(
"se_epi_pe2_sidecar",
type=Path,
help="The JSON sidecar for the second spin-echo EPI file",
)
_parser.add_argument(
"out_dir",
type=Path,
help="The directory into which outputs are written",
)
_parser.set_defaults(handler=handler)
return _parser
def handler(args: argparse.Namespace) -> int:
se_epi_pe1: Path = args.se_epi_pe1
se_epi_pe2: Path = args.se_epi_pe2
se_epi_pe1_sidecar: Path = args.se_epi_pe1_sidecar
se_epi_pe2_sidecar: Path = args.se_epi_pe2_sidecar
out_dir: Path = args.out_dir
# create the workflow
wf = create_generate_fieldmaps_wf()
# wire-up the workflow
wf.base_dir = out_dir.expanduser().resolve()
wf.inputs.inputnode.se_epi_pe1_file = se_epi_pe1.expanduser().resolve()
wf.inputs.inputnode.se_epi_pe2_file = se_epi_pe2.expanduser().resolve()
wf.inputs.inputnode.se_epi_pe1_sidecar_file = (
se_epi_pe1_sidecar.expanduser().resolve()
)
wf.inputs.inputnode.se_epi_pe2_sidecar_file = (
se_epi_pe2_sidecar.expanduser().resolve()
)
# run it!
wf.run()
return 0